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Abstract

Modern hardware virtualization techniques on the x86 architecture make it possible

to construct effective hypervisors with only a small necessary code base. Hypervi-

sors like Jailhouse use this to provide safe segregation of the platform’s hardware

resources into distinct partitions. Using the guarantees given by the hardware and

the small, verifiable code base of the hypervisor makes it possible to run tasks with

mixed criticality together on the same hardware platform, put together with only

commodity hardware.

Crucial for this function, and with that for the function of potentially safety relevant

tasks, is that the hypervisor is started correctly, with the correct hypervisor-image,

the correct configuration and on the actual hardware which provides the guaran-

tees.

In this work, Intel’s Trusted Execution Technologies, also shortened with TXT, are

evaluated for the task to launch such a hypervisor during the runtime of a general

purpose operating system. To prove this concept, a design to support TXT was

created and subsequently implemented with the hypervisor Jailhouse as base. It is

now possible to launch Jailhouse via TXT, and thereafter to verify its integrity with

proven methods like remote attestation. Although this improves the confidence in

the hypervisor setup considerably, it also became clear that TXT has a large amount

of intrusive requirements, which it will force upon every software that wants to make

use of it. It only becomes a valid option to use TXT in the envisioned use case, if

these requirements are acceptable.
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1 Gaining Trust in a Hypervisor

Virtualization solutions which execute multiple operating systems (or in general,

bare metal applications) on top of and alongside with other software are today

widely used in computer systems for a variety of tasks [WP10, Gol74]. They serve,

for example, to support development and to test of new software — not least to

develop and test operating systems [Bin06]. Virtualization is also used to raise

efficiency in data centers by running more than one system on real hardware, and

thus it lowers the time this hardware spends in idle [KNS13]. In doing so, those

solutions also guarantee that the virtualized systems are isolated from each other,

so that they can’t access each other’s information or worse, influence each other

maliciously [BM13].

But until some years ago, it was not possible to develop such solutions in a way

to allow them to execute the virtualized software (virtual machines, abbr. VM )

unchanged and directly on processors of the x86 architecture. This was largely due

to some operations that would, when executed natively on the processor, expose

systems states without the ability to trap them, or they would fail silently without

generating errors, and thus they would fail the isolation [NSL+06]. Softwares like

Xen or VMware had to deploy other solutions to make the virtualization possi-

ble [AA06, BDF+03, BDR+12].

They also had to develop ways to make it possible for the VMs to use I/O de-

vices. While some decided to fully emulate I/O, and thus also made it possible to

multiplex existing devices, others had to spend this unwanted effort to uphold the

isolation [AJM+06].

All this overhead meant that the performance of the virtual machines would suf-

fer [ByMK+06]. This lead to the implementation of extensions for the x86 archi-

tecture by both Intel and AMD [NSL+06, Kle09, AMD05] — Intel named their

extension VT-x and AMD theirs SVM. They allow the virtual machine monitors

(the part of the virtualization solutions that creates and maintains the environment
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Chapter 1. Gaining Trust in a Hypervisor Benjamin Block

for the virtual machines, abbr. VMM, also called Hypervisor) to let the virtual-

ized software run directly on the processor. Any operation that would change an

important system state or leak inappropriate information can now be trapped and

handled correctly by the VMM. Further introductions of additional memory man-

agement units between I/O devices and their connection to the main memory via

DMA (IOMMU s) have made it possible for VMMs to let virtual machines use these

devices directly as well [AJM+06].

To use these extensions, the VMM has to have sufficient privileges, it has to be exe-

cuted with privilege level 0 (often also referred to as ring 0) [AMD05, Int14b]. Even

more, once the system activates the extensions, the VMM can overrule any other

piece of software — including the operating system that may have been executed

before the activation [Sin14a]. This means that every software which is executed

thereafter on top of it — possibly multiple complete operating systems, together

with their own software stack — has to rely on the proper function of the VMM.

This provides the motivation for this work. The first step in ensuring that the

VMM — or any other piece of software — executes properly, is to make sure, before

executing it, that the loaded code with all its inputs is the expected. The same

problem can already be seen in the execution of operating systems and a software

stack on top of them — correct execution relies on the proper function of the OS.

Along with this task comes the next problem: how can a third party be convinced —

may it be the user of the system or any other computer — that the correct software

was started and is still running? It can’t trust any results or commands from this

software or, in case of a VMM, any of the VMMs without this knowledge.

This is exactly the problem that the Trusted Execution Technology from Intel (abbr.

Intel TXT ) tries to solve [Gre13, Int14c]. TXT was introduced by Intel in 2007 and

adds new instructions to x86 to support the trusted execution of arbitrary software,

at any point during the lifetime of a system — not limited to either VMMs or OSs.

To support its task, it makes heavy use of the Trusted Platform Module (abbr.

TPM [CYC+08, Cor10]) to securely save information and to provide the ability to

attest that the expected software was executed.

Currently TXT is only used in few software systems, most of them use it in the

context of secure boot (as replacement for the same functionality provided by UEFI).

They activate it as part of the boot process to record and test the code of the OS

or VMM that is about to be started on the bare metal [FG13].

This work will evaluate it as means to start a VMM during the lifetime of an already
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running OS. In the presented scenario, the OS needs to be kept unimpaired, and

will continue to execute as one of the started VMM’s virtual machines. A design

and implementation, confirming to these requirements, has been created with the

hypervisor Jailhouse [Jaib, Kis14] and the operating system Linux. This work will

present both the design and implementation, and a throughout analysis of what

Jailhouse can guarantee by using Intel TXT to start. Furthermore, it will show how

a user can gain trust in the system once it is started, and what impact the additional

work for using TXT has on the hypervisor.

1.1 Structure of this Work

The following chapters of this thesis are organized in the following way. Chapter 2

on page 5 will give a more in-depth introduction into the topic virtualization; it will

define the problems VMMs face and how recent hardware extensions on x86 im-

proved that situation; finally, it will present the VMM used as example in this work:

Jailhouse. Chapter 3 on page 25 will then present the motivation as to why Intel

TXT is considered to be used to start Jailhouse, and how exactly TXT works as

hardware extension. After establishing these fundamentals, Chapter 4 on page 53

will elaborate on what others have done in this area. Thereafter, Chapter 5 on

page 61 will present the design developed to solve the task of this work. Chap-

ter 6 on page 75 will then present the implementation created according to this

design, together with measurements about its size and performance. In Chapter 7

on page 101, the design and implementation will be evaluated for their security:

against what malicious attacks can they defend themselves by using TXT in the

way proposed. The final two chapters, 8 on page 117 and 9 on page 119, will discuss

what future work in this field is still necessary and conclude the results that could

be made during this work.

3





2 Virtualization of Hardware

This chapter will present the necessary fundamentals to understand how the virtual-

ization solution Jailhouse works. Jailhouse will be used as the main example in this

work, and thus also sets a large share of the requirements for the design and imple-

mentation created with it. Apart from this, parts of the shown techniques will later

also be used as means in the security analysis to accomplish certain properties.

The first Section 2.1 will define what this work understands under the broad term

of virtualization and what requirements this poses for a solution aiming to imple-

ment this concept. How these requirements can be fulfilled with recent architecture

extensions to x86 will be presented in Section 2.2 on page 7. Finally, Section 2.3

on page 15 will give an in-depth overview of the main hypervisor example in this

work: Jailhouse. It will show how Jailhouse is different from other solutions, how it

handles the virtualization of the system and with that, what requirements it imposes

on a design and implementation of Intel TXT for it.

2.1 The Use of Virtual Machine Monitors

2.1.1 Definitions

Virtualization in computing is a very broad term, used for a variety of topics. This

work will use the following as the general definition for the term [Sin04]:

Definition 2.1. Virtualization is a framework or methodology of dividing the

resources of a computer into multiple execution environments, by applying one or

more concepts or technologies such as hardware and software partitioning, time-

sharing, partial or complete machine simulation, emulation, quality of service, or

others.
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Figure 2.1: Organization of virtual machines on top of a VMM virtualizing the complete
hardware of computer system.

This methodology is frequently applied to different resources of a single computer,

such as memory, the processor or I/O devices; most commonly by the operating

system running directly on the hardware. This makes it possible to run more than

one application on top of it, without the need for these applications to know of each

other or the limitations of the actual hardware. This requires that the operating

system has full access to the actual hardware [TB14].

What this work uses the term virtualization for, is to create a virtual version of

a whole computer, so that it becomes possible to run multiple operating systems

— or more generally, applications that assume direct hardware control (bare metal

applications) — next to each other, each on their own virtual version of the system.

One such virtual instance of the system is commonly called a virtual machine (abbr.

VM) and was formally specified in 1974 by Popek and Goldberg [PG74].

The software used to manage the different virtual machines on one computer is

called the virtual machine monitor or hypervisor ; an example of how such a system

can be organized is shown in Figure 2.1. Popek and Goldberg defined a VMM as

follows:

Definition 2.2. A software system is considered a virtual machine monitor if

it has the following characteristics:

1. Fidelity : The VMM provides software running on it an environment essentially

identical with the original machine.

2. Performance: The software running in this environment shows at worst only

minor decreases in speed.

6
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3. Control : The VMM is in complete control of all the hardware resources of the

underlaying computer system.

By requiring an “essentially identical” environment, it is left open that there may

be differences in timing and system resources available to the virtual machine. Both

stem from the fact that the original system is shared between multiple virtual ma-

chines and thus can’t provide the same resources as if it was used directly. For

example, there will be less memory and processor time available for a single VM.

To achieve the second characteristic about performance, it is necessary to run most

of the instructions of the VM directly on the real processor. A VMM that would

uses an interpreter to execute the instructions may have to use hundreds of physical

instructions for the interpretation of just one instruction of its VMs [AA06]. This

rules out the use of an emulator.

The final characteristic makes sure that VMs can only ever use resources explicitly

allocated to them — even more, the VMM has to have the ability to recover any

resource from a VM, if that is necessary. This also means, any access to another

VM’s resources which are not explicitly shared has to be suppressed by the VMM,

and thus makes it possible to isolate them from each other.

Implementation approach The classic implementation approach for a VMM to

fulfill those characteristics is Trap and Emulate.

A more comprehensive description of this approach, and why until recently it was

not possible on x86 to implement it directly, can be read in Appendix A on page 121.

VMMs did exist, but they had to use more complex and slower algorithms [VMw09,

BDR+12]. This situation only just changed with the introduction of the extensions

described in the following section.

2.2 Hardware Support for Virtualization on x86

To make it possible on x86 to implement efficient VMMs, with only a small amount

of source code (compared to the solutions made before), both Intel [NSL+06, Int14b]

and AMD [AMD05] released extensions for their x86 architectures to support the

original trap-and-emulate approach. This section gives a short overview of how Intel

solved the problem with their extension VT-x (AMD works conceptional in the same

way, but is differently implemented and thus incompatible).

7
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2.2.1 CPU-Virtualization

Essentially, VT-x introduces two new forms of operations to the x86 architecture:

VMX root operations and VMX non-root operations (VMX stands for Virtual Ma-

chine eXtensions). VMX root operations are very much like operations without

the extension. The only differences are, once activated, root operations have access

to a new set of instructions (the VMX instructions) and certain control registers

become become limited (some bits in CR0 and CR4 become fixed). These operations

are intended to be used by the VMM [Int14b].

The VMX non-root operations are intended to be used by the VMs, or guests as they

are also commonly called. They also behave much like the normal x86 instructions.

It is, for example, possible to operate under all four privilege levels with them. But

they add the ability for the VMM to trap all sensitive instructions executed by the

guest — such a trap is called VM exit.

Trap-and-Emulate using VT-x To enter these new operation modes, the VMM

has to execute the instruction VMXON. It then executes with the new VMX root

operations and has access to the new instruction to setup and configure its guests.

Subsequently, it can decide to enter a guest by doing a VM entry. This will set the

processor into the VMX non-root operation mode and then continue the execution

in the guest as long as no exit reason is reached — a trap for example. Figure 2.2 on

the next page illustrates this life cycle based on a VMM with two different guests.

The transition between root- and non-root is controlled by a structure called the

Virtual-Machine Control Structure (abbr. VMCS ; this acts as a shadow structures

in the trap-and-emulate scheme). It includes an area controlling the state of the

guest upon a VM entry (the guest-state area), an area specifying the state that is

restored when a VM exit occurs (the host-state area) and finally some control fields

to configure when and why a VM exit shall happen (the VM-Execution Control

Fields).

Figure 2.2 on the facing page also shows how this structure is used during the

life cycle of a VMM. After the VMM has executed VMXON and entered the root

operations, it will configure the VMCS by using the new instructions that have

been added for this (VMCLEAR, VMPTRLD, VMREAD and VMWRITE). It writes its own

processor state into the host area, and the state of the guest into the guest area.

This includes all crucial operation state information of the processor, such as:

8
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Figure 2.2: Diagram showing the life cycle of a virtual machine monitor using the VT-x
extension. Each combination of VMM and guest has its own VMCS, with its
own set execution �elds; the host-state area has to be shared manually between
them.

• control registers,

• segmentation registers,

• some model specific registers (MSRs; for example the MSR EFER),

• important execution registers, like the instruction pointer,

• and the descriptor registers.

Next to these states, the VMM also specifies what later shall cause a VM exit.

Again, this list is made up from several components, the most important include:

• execution of several different sensitive instructions,

• interrupts during the guest-execution,

• accesses of sensitive processor registers,

9
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• I/O via the port I/O mechanism and others.

Most of these exit-reasons can also be specified more precisely than only on the base

of the whole class of operations (which would be the case in the classic trap-and-

emulate scheme). It is, for example, possible to enumerate the exact I/O ports a

guest can access uninterrupted via port I/O, and which others will cause a VM exit.

This way it is possible to allocate resources to a VM without the need to intervene

later — saving VM exits, which are quite costly [FO06].

When this is done, the VMM can activate the configured guest via the instruction

VMLAUNCH. This instruction won’t return on success, it will instead load the specified

states from the guest state area and the processor will continue executing in the

non-root operation mode, until one of the exit-reasons is met.

Lastly, once such an exit-reason is met, the processor will proceed with a VM exit

and reload the states saved in the host area of the VMCS and return to the VMM. It

can then examine the exact reason and emulate the effect appropriately, like in the

classic trap-and-emulate scheme. This process is continued for the whole life-cycle

of the VMM and ultimately turned off by a call of VMXOFF.

Memory Tracing using Extended Page-Tables Although this would already meet

Popek and Goldberg’s theorem (A.1 on page 122) [NSL+06] and remove the need for

implementing a complex binary transformation engine inside the VMM, it was found

that it would not add much performance advantage to a VMM using it [AA06]. The

main reason for this was the need to still implement a page level memory tracing

(described in A on page 122). This meant that every access to a critical memory

area in a guest (e.g.: page tables or MMIO areas) had to be trapped and would cause

a VM exit; this added a considerably large overhead to the execution [VMw09].

This shortcoming was again addressed by both Intel and AMD [AMD08]. Intel’s im-

plementation is called Extended Page Tables (abbr. EPT ). The more general term,

which addresses both implementations, is Second Level Address Translation (abbr.

SLAT ). It extends the paging algorithm used during VMX non-root operations with

an additional address translation step.

Usually, when paging is activated, addresses are translated two times: the addresses

used in the software are virtual addresses and are translated into linear addresses

using the segmentation mechanism of the protected mode (although today, virtual

addresses are usually resolved into the same linear addresses to remove complexity

and because segmentation is only partially supported by x86 64); these are then

10
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Figure 2.3: Diagram showing the resolution of a virtual address of a VT-x guest into a
physical address of the host using the extended page tables.

translated again using the activated page-table and thus resolve into the final phys-

ical address [Int14b].

SLAT adds the notion of guest-physical addresses to this algorithm. During non-root

operations, addresses are translated using the same procedure as described above,

but the result is not an actual physical address, but instead a guest-physical addresse.

This address is then translated again, using a separate page-table configured by the

VMM (the EPT ), and only then resolves into the actual physical address.

This process is depictured in Figure 2.3. Both translations, the one from guest-

virtual into guest-physical addresses and then the one into host-physical addresses,

are handled by the hardware memory management unit (abbr. MMU ). The EPT

itself is assembled during the configuration of the guest or later on demand by the

VMM. It can not be accessed by the guest during the non-root operations — it

is completely transparent to the guest; it just programs the paging as it would

running directly on the hardware. Because the VMM can exactly choose which

physical resources it wants to allocate for the guest, it has no longer any need to

intervene later on when the guest is executed, and thus it can completely remove

the memory tracing and traps for accesses to the page-configuration registers.

Further extensions to VT-x (the Unrestricted Guest Mode) made it even possible for

guests to run completely without paging, in the real- or unpaged protected- mode.

During those, the EPT is still enabled and the MMU still translates every memory

reference done by the guest, but the guest itself does not have to employ any trans-

lation scheme. Hence, the control characteristic is still satisfied, but the VMM can

deactivate even more traps and thus has to handle even fewer VM exits.

11
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2.2.2 Virtualizing Device I/O

Another difficult problem for VMMs on x86 is to maintain the control characteristics

for device I/O [WRC08, WSC+07, AJM+06]. By using VT-x in combination with

an EPT, it is possible to safely allocate I/O ports and MMIO regions directly to a

single VM. I/O ports are handled as described in 2.2.1 on page 8 and MMIO regions

by enabling the SLAT — a VM may only access a MMIO region that is mapped

into its guest-physical space.

But devices usually also deploy some form of DMA to save processor time, they read

and write data directly into the main memory. These accesses are not managed by

the processor’s MMU, and therefore they are also not affected in any way by the

SLAT or any other paging deployed by the processor. Guests could abuse this by

programming the assigned devices with wrong physical addresses — violating the

control characteristic.

Emulation and Paravirtualization Two of the most popular approaches to solve

this problem are to completely emulate the devices or to provide a special ABI with

logic device function — this this called Paravirtualization [AA06, Rus08, Jon10].

An overview for both concepts can be seen in Figure 2.4 on the next page.

Both approaches share that the real device is not exposed in any way to the guests

of the VMM, and thus they solve the problem with DMA by not letting the guests

access the devices. Instead, the VMM has its own complete device driver and exposes

chosen functions of it via a added interface to its guests — how many functions and

how they are accessed is based on the chosen method.

Direct I/O Access via an IOMMU The downside of both of these approaches is

that they require the VMM to implement its own drivers and a device abstraction

layer. While this is desirable for VMMs that want to present guests with more

resources than actual available or share one resource between multiple guests, it adds

unnecessary complexity for others. But to be able to give the guests direct access

to the devices, there has to be a mechanism to prevent them from programming the

devices with incorrect addresses.

This is the motivation for another extension recently added to x86: IO Memory

Management Units (abbr. IOMMU ). The concept behind those is parallel to the
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Figure 2.4: Diagram showing the architecture of a VMM providing virtualized devices
via a software implementation. The left VMM uses a software emulation to
provide its guest with an identical interface so it can use an unmodi�ed driver.
The right VMM provides its guest with a de�ned device ABI and API that
provides logic functions like send network package; the guest has to use a
modi�ed driver to use the functions provided by the API with the ABI.

one behind SLAT: an IOMMU adds an address translation step to memory accesses

of I/O devices.

Rather than a guest-physical address, the IOMMU introduces the notion of a device-

physical address. Those are the addresses the device gets programmed with, and

thus whenever the device makes an access via DMA, it will use these addresses,

but it won’t access the physical memory directly. Once activated, the memory

access will be routed through the IOMMU, which is locate between I/O devices and

memory — in case of Intel’s implementation VT-d, as part of the north bridge [Int13,

AJM+06].

During the access, the IOMMU will identify the device (for example by its PCI

(Bus, Device, Function)-tuple) and select the programmed page table. Each device

can have its own page table, or some can share a common one. This table is then

used to translate the device-physical address into a host-physical address, which is

then used to access the memory.

This setup is, again, programmed by the VMM and transparent to the devices, just

as the EPT is to the VMM’s guests. The VMM could, for example, decide to map
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Figure 2.5: Concept of an I/O device making a direct memory access via an immediate
IOMMU. DPA stands here for Device-Physical Address and HPA for Host-
Physical Address. The Ident is given implicitly and may for example be the
PCI BDF.

the exact same memory region in the device’s page table, with the same translations,

as it does in the EPT. This way, the guest can use its own guest-physical addresses

to program the devices, and accesses will translate into the same memory locations

for both, and thus relieves the VMM from intervening in this process.

Other than that, VT-d can also be used to handle the device’s interrupts (Interrupt

Remapping). Again, this is done by applying another translation table. This table

is used to redirect interrupts generated by a device to a specific processor, and

with that to the guest running on it [Int13]. With this, it prevents inappropriate

interrupts to unrelated guests or information leaks.

With both features together and VT-x ’s ability to moderate accesses to in-memory

config areas, it is possible to assign devices directly to a VMM and moderate all

the influences guests can have on other parts of the system via DMA or interrupts.

It won’t however solve all problems that can arise from direct assignment. It is

possible that devices employ other communication schemes than DMA, or that a

guest brings a device into an unrecoverable fail-state; in both cases it could still

violate the control characteristics of the VMM. If such a behaviour is possible for a

device, it has to be handled specially1.

1It was not possible to �nd a general purpose solution for such a special device behaviour, it is
doubtful there is any.
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2.3 The Jailhouse Hypervisor

Most of the virtualization solutions today make at least use of some of the presented

extensions [WP10]. The solutions most commonly known use them to provide a

degree of over-provisioning to their users [KNS13]. They aim to run multiple, full

operating systems as guests and supply each of these guests with a full range of usable

processors and I/O devices. This way, each guest can have its own network adapter,

its own set of processors and its own memory. For a VMM running multiple such

systems on one physical host, it is hard to provide each of those resources dedicated

to only one virtual machine, and thus it is not possible to allow uninterrupted direct

access.

To solve this problem, they apply a similar set of algorithms as a normal operating

system. Processor time is shared via a scheduler, memory is virtualized via EPTs

— interpreting a VM as a normal application running on an operating system,

the EPT can be seen as normal page table — and for I/O there is often a mix of

emulation and paravirtualization used. Combined, a VMM can allocate a single

resource of the host to multiple of its VMs or even over-allocate the resources of

the host. If it satisfies the characteristics defined in 2.2 on page 6, the software

running on the VMM will not notice anything and won’t be able to have influence

on others — ignoring impacts in efficiency. While this can increase the efficiency

of one host and lower the required physical hosts [KNS13], it also means that it

becomes harder to predict what time- and resource-guarantees a VMM can make

for its guests [CAA08, CGFC10, XLG+13].

Jailhouse aims for a different goal, it aims to provide its guests with a strong isolation

and guaranteed time constraints. Both with only a small and potentially verifiable

code base. To make this possible, it doesn’t employ over-provisioning, any form of

scheduling, and resource-sharing only if explicitly configured [Kis14, Sin14a, Sin14b,

jaia].

Instead, it splits the available hardware into distinct (static) partitions, and once

one of these partitions is allocated to a guest, it is not changed anymore. This

approach has already been used in the past on other architectures than x86, for

example, IBM’s System z provides a similar feature called Logical Partition (abbr.

LPAR) [BCDB+14].

To achieve the small code base, Jailhouse refrains from using software to intervene as

much as possible. Rather then that, it uses the presented hardware features on x86
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Figure 2.6: Overview of Jailhouse’s base architecture.

to achieve the isolation, and only traps instructions when absolutely necessary.

Architecture of Jailhouse The basic architecture and how Jailhouse organizes a

system can be seen in Figure 2.6.

As shown, the available hardware of the system is completely split into separate

partitions. One such partition must at least have a single processor and some mem-

ory assigned (otherwise, it would not be possible to execute a VM on top of this

partition). Other than that, it can be made up from any other available processors,

memory and I/O devices. But once a resource is allocated to a specific partition —

other than the root partition, which will be explained below —, it is not possible

to change or interchange it with a resource from another partition. Otherwise, the

user is free to assemble the partitions as he sees fit. He even could explicitly share

memory and I/O devices between partitions — although this may be difficult to

handle for the guests running on them. The partitions are also frequently called

cells in the context of Jailhouse — they are essentially the same as a VM with a

static set of resources.

During the start of Jailhouse, the main hypervisor code will be loaded by a Linux
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kernel module, alongside with a binary configuration containing a detailed hardware

description of the target system — it lists processors, memory and devices, all with

their respective access rights. It will then give control to Jailhouse, which will

use the given configuration to bootstrap itself on the target machine (it won’t use

information provided by Linux).

In this bootstrap phase, the VMM will create the root cell. This cell will later

represent the Linux which started this process. The VMM will assign all CPUs, the

memory and all devices to this cell which are described in the given configuration

(nothing more, left out resources will not be available). This cell will then finally

be programmed with the state of the previously running Linux as guest state, and

the VMM will continue running it as guest on top of it (more details of this process

will follow later in this section).

Whenever an additional partition is created for another guest, the assigned resources

are gradually taken away from the root cell (it is also possible to assign resources

to a partition that were not previously assigned to the root cell). The resources will

only be given back to it, in case those new partition are destroyed again (if originally

configured this way). For most devices — with hotplug functionality — this can be

done without modifications to the Linux running in the root cell (there are some

corner cases; for example memory is not as easy to handle, the solution for this will

be given later in this section)

Virtualization-Techniques used in Jailhouse To implement the VMM-functions,

Jailhouse makes heavy use of the x86-extensions introduced in this chapter (or equiv-

alent functions on other architectures like ARM). It requires at least a processor

with support for VT-x with the EPT-feature and an IOMMU, or the equivalents on

AMD’s processors.

The guests running in the cells of Jailhouse — this includes the Linux running

in the root cell — are executed with the techniques described in 2.2 on page 7.

Using the IOMMU, they also get direct access to the allocated I/O devices in their

partition. In order to lower the complexity of the hypervisor, Jailhouse tries to not

emulate any devices. Exceptions to this rule are parts of the interrupt controller,

device configuration spaces, a virtual inter-cell communication-device and interrupt

remapping for the root cell.

During the runtime of a non-root guest, Jailhouse tries to do as few VM exits as

possible.
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The mappings in both the EPT and the IOMMU page table are never change during

the runtime of a guest. This means, there will never be page-faults that would require

exits and handling (other than page-violations).

Processors are handled in the same way, they are statically assigned to certain

guest cells — making scheduling of the them needless. In combination with the

interrupt remapping tables of the IOMMU, this makes it also possible to statically

assign device-interrupts to certain partitions, which makes exits because of them

unnecessary as well.

In general, interrupts only ever cause VM exits, if they could compromise the isola-

tion between the cells (for example, in case of inter-processor interrupts, Jailhouse

has to verify that the target processor is in the same cell as the source).

This all makes it possible, unless a guest deliberately accesses sensitive control in-

formation, to execute non-Linux guests with zero VM exits.

Other than not emulating any devices, it is also important to note that Jailhouse

does not support the start of unmodified guests on x86 (Linux can run unmodified,

if it runs in the root cell). This is because Jailhouse does not emulate a BIOS

firmware and has a non-standard reset vector (on x86 this is normally located at

0xFFFFFFF0, Jailhouse places it at 0x000FFFF0)

Usecases for Jailhouse It is not the intention of Jailhouse to run multiple full

operation systems on one system; this would also be hard to achieve because of the

limited resources — multiple full OSs would require a lot of redundant hardware in

a machine. The main usecase for Jailhouse are systems that run applications with

diverging criticality which need to be separated from each other in a safe way.

For example, a system that controls an engine and displays information about it to

an operator could be split into two separate cells, one for each task. The engine

control, a safety critical task, could run in its own cell and use a dedicated interface

card to communicate with the engine (this card would be assigned to the control cell

exclusively). The root cell could continue to run Linux and use the existing graphical

infrastructure to display the various engine value. It would receive them from the

engine control through a defined communication channel. Jailhouse separates both

cells in a safe way through the use of the hardware extensions and can thus guarantee

that the root cell may never have influence over the engine or the interface card of

the control cell. Even if Linux would crash for a reason, this would only let the
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uncritical task of displaying the information fail. The engine control could continue

to run and safely shut down the engine to react upon the failure of the other cell.

An other field where Jailhouse can be very helpful, is to consolidate legacy single-core

operation systems into one multi-core system (e.g.: different RTOSs — no general

purpose OSs). Each core of the system, along with a small amount of memory

and necessary devices, could execute its own OS and with that continue its life-

time, without the need to re-implement (and possibly re-verify) those tasks in new

environments. The Linux in the root cell could then be used as interface to collect

and aggregate information of the other OSs, but thanks to Jailhouse it would be

unable to influence them inappropriately.

2.3.1 Running Jailhouse on Linux

To better understand the later presented solution, to execute Jailhouse in a trusted

way, this section will briefly show the key steps of starting Jailhouse in the normal

way.

Jailhouse’s Components An execution of Jailhouse makes use of 4 major software

components: the Linux kernel driver, a management utility, the hypervisor image

and the hypervisor configuration. An overview of how they interact can be seen in

Figure 2.7 on the next page.

Because Jailhouse makes use of VT-x and other hardware extensions, it needs to

be executed with privilege level 0 [Int14b] — the highest. Under Linux, this level

is restricted to the Kernel and thus the need for a driver that runs in the context

of the Kernel [Lov10]. Despite that, it is important to note that Jailhouse itself is

not part of the Linux Kernel — unlike, for examples, the kernel’s own hypervisor

KVM [KKL+07]. The kernel is only used to start the hypervisor — to gain the

required privilege level, reserve the necessary memory and gain control of all the

processors — and to interact with it, once it is started.

The implementation of the driver is also not part of the kernel itself, but also part of

Jailhouse and build alongside with it — not as part of, but individual component.

The resulting module can be loaded at any time before the start of Jailhouse and will

then present the root user with a device node as interface (this node is programmed

with the usual system calls).
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Figure 2.7: Diagram showing Jailhouse’s software components and how they interact with
each other during the startup of the hypervisor.

For the interaction with the driver, a small set of utilities is provided along with

it. They make use of the provided device-node and are the main user-interface at

this point.

The hypervisor itself — represented as “Code” in the figure — is represented

as a simple binary image. This image is platform specific and only contains the

components required for the target system — Intel, AMD, ARM. Which exactly, is

decided at compile- and link-time. It does not though contain information about

the runtime itself — as for example code location, processor count or available I/O

devices.

Those information are stored in the configuration . This file will contain a hard-

ware description of the system Jailhouse is executed on (this may contain fewer

resources than available; an overview is shown in Table 2.8 on the facing page).

Instead of using extensive device- and system- probing via ACPI, PCI configuration

areas, BIOS or other such methods on x86, Jailhouse relies mostly on its config

and applies detection only where it is necessary — for example, to detect runtime

information that are to inconstant for long-time storage. As of the moment of this

writing, the only exceptions to this, that are taken from Linux, are the logical pro-

cessor IDs the Linux kernel assigns at its boot-time. These are given as arguments,

from the driver to the hypervisor, and are reused as identifier in the hypervisor.
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Configuration Part Description

Hypervisor Location The (physical) location and size of the hypervisor in the
memory during runtime.

Processors A bitmap enumerating all available processors; the
position corresponds to their logical ID.

Memory Regions An exact listing of all memory regions, containing usable
RAM and regions reserved for ACPI, PCI and other
system components. Each defined region also contains the
expected usage permissions (read, write, exec, DMA) and
usage type (I/O, comm. region, RAM).

IRQ Chips A listing of all available IRQ chips and their MMIO
location in the memory (e.g. IOAPICs).

PIO Bitmap A description of the whole PIO space with a bit for each
port, describing if accesses to this port are allowed or not.

PCI Devices All available PCI devices, their identifier, type, PCI
capabilities and the IOMMU they are behind.

Platform Details More details that are specific to the used computer
platform, like the amount of available interrupts or
number of available IOMMUs.

Figure 2.8: Table showing the parts and their description of a Jailhouse con�guration �le.

Loading the Hypervisor Starting Jailhouse, once a complete configuration is cre-

ated, is straight forward (see figure 2.7 on the preceding page).

Once the driver module is loaded into the Linux Kernel, the root user can en-

able Jailhouse by sending an IOCTL system call to the created device node, with

the chosen configuration as argument. The driver will then map the configured

physical hypervisor location into the kernel’s page table and load the remaining

components into that area (the virtual address space of Jailhouse always start at

0xfffffffff0000000). This location is not allocated in Linux, but is reserved for

Jailhouse via a boot-time argument of the Linux kernel, and is thus also always at

the same location for a given configuration2.

The hypervisor image (the code) is loaded at the beginning of the memory area.

Following the code, the driver allocates a small amount of memory for each available

processor (labeled “per cpu data” in the diagram). This space — seen as simple

array — is later used to store information unique to a specific processor. Finally,

2This may be used at a later point during the development to check the integrity of Jailhouse in
safety critical applications, by calculate stable checksum over this area.
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the driver loads the given configuration completely and unchanged into the ensuing

space.

At this point, all component are loaded into the memory and Jailhouse can be

started.

Running Jailhouse To do this, the driver has to make a function call on every

available processor into the address space of the loaded code. This function repre-

sents the entry-point of the hypervisor and its address is specified at the beginning

of the loaded image (in a header). At this point, the hypervisor will only return

full control over the hardware back to Linux, in case an error happens during the

startup or at the time the hypervisor is shutdown again — the driver relinquishes

control over the system on behalf of the Linux kernel.

The entry function will first store all registers which represent the current operation

mode and computation state of the kernel, into the area of the particular processor.

With those saved states, the VMM will later be able to continue running the Linux

as a guest, without any notable discontinuities.

After that, the entry path will continue by checking and promoting Jailhouse’s own

desired CPU and hardware state, including the change from Linux’s page table to a

newly created one. This will eventually lead to the setup of the VT-x and IOMMU

structures. For this last step, it will put the previously stored processor states into

the guest-state area of the VMCS, and its own into the host-state area; and thus,

when the VM enter is done, it will continue running Linux as guest with the exact

state it had when it entered the entry function.

The lengthly process that happens in between those calls is out of scope of this work;

a far more comprehensive description of it can be found in [Sin14a, Sin14b]. Here,

we will only note two more points.

First, at the point where the entry function is called, the processors still use the

page table of the Linux kernel. Jailhouse will exchange this table for its own and

also deploys its own simple page allocator to manage its virtual address space and

later on, that of its guests.

Secondly, the EPTs and IOMMU page tables will only contain memory areas spec-

ified in the given configuration. That means, if any area is not specified or has the

wrong access-permissions, it will not be accessible, neither for the Linux root cell,

not for any other cell. The same is applied to the I/O devices of the system: with
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a few possible exceptions, only devices listed in the configuration will be mapped

with the IOMMU and its interrupt remapping (one exceptions is for example the

PM-timer).

Later on, when Jailhouse has returned to Linux as guest, and Linux is used to create

other cells, every cell configuration will again state the exact memory areas and I/O

devices it wants to use. These are then removed from Linux’s EPT and IOMMU

mappings (if they were present in the original configuration) and hence, become

inaccessible for it.

Metrics About Jailhouse The size of the hypervisor components and the perfor-

mance of the presented start procedure can be seen in 6.2 on page 96 and 6.4 on

page 99.
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3 Trusted Execution

At the end of the last chapter, it was shown how important and powerful a single

piece of software — the hypervisor — can become. After Jailhouse starts, the whole

running software system on the target machine depends on the function of it — even

the operating system that executed before it. Even more, the envisioned guests with

higher safety requirements than the original operating system will depend on it and

on its capabilities to separate them from the other parts of the system. All is

concentrated on the proper function of this small, well defined piece of software.

But as of now, there is no way to check whether the loaded hypervisor image is

intact and the one that is expected (e.g.: by the user). The only check done is a

comparison of a commonly known value in the header of the image. And while this

is also often true of other software — operation systems, kernel modules of those, or

normal software — the effect of a failure in a hypervisor like Jailhouse is amplified

by the type of guests it shall make possible.

This principle can also be observed at other points during the runtime of a computer,

and is central motivation for the topic Trusted Computing [PMP11] — how can users

gain “trust” in the software running on a computer? And while this task covers more,

one central problem is to ensure that the expected software was started correctly in

the first place and how this can be proven to another party. This subtask is also

called Trusted Boot or Trusted Execution.

This chapter will give an introduction to this topic and the techniques that are in-

tended to be used to execute Jailhouse in a trusted way. A short, general overview

over the envisioned solution will be presented in Section 3.1 on the following page.

Section 3.2 on page 27 will define the necessary terms and describe the general tech-

niques to implement Trusted Boot on a modern computer. Section 3.3 on page 32

will then introduce the Trusted Platform Module (abbr. TPM ), a hardware exten-

sion that is used to support this task. And finally, in Section 3.4 on page 40, the

Intel Trusted Execution Technology (abbr. TXT ) will be introduced. This is the
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Figure 3.1: Rough overview over the process of executing the Jailhouse hypervisor in a
trusted way, using Intel TXT and a TPM. All the necessary components will
be explained in more detail throughout this chapter. A short explanation for
the individual steps can be found in section 3.1.

central topic of this work and later it will be evaluate, how TXT can be combined

with a hypervisor like Jailhouse.

3.1 Overview of the Envisioned Execution

Before going into the details of the trusted execution, this section will give a short

overview of the envisioned solution for the hypervisor Jailhouse. The process is

visualized in Figure 3.1:

1. The start of the process is the same as before: the kernel module receives the

signal to start the hypervisor.

2. It will then decide to launch the hypervisor with the trusted execution and

issue the appropriate commands.

3. After that, Intel TXT takes over control of the whole system. During this

step, the CPU will execute a special procedure outside of user control. It will

unlock special functions of the system’s TPM (localities; explained later), reset

the TPM’s secure storage and save a hash of the following software in it (the

ACM).

4. This saved hash is then compared, and the ACM (software supplied by Intel)

only gets to execute if the hash matches an expected value of a cryptographic
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signature (this signature is not alterable by the user). Otherwise the CPU will

reset the system completely.

5. The ACM will then use the unlocked functions of the TPM to save a hash of

Jailhouse in the secure storage.

6. (optionally) In case the user has (securely) specified in the TPM that LCPs

shall be used (a form of hash lists), it becomes required to supply a list of

accepted hashed to the ACM (the LCP). Using this, the ACM will search for

a hash matching the one of Jailhouse that was just stored.

7. Should such a match be necessary and no hash be found, then the ACM will

reset the complete system, too. In case no match is necessary, or in case one

could be found, it will finally execute Jailhouse.

At each of the transitions (the 4. and 7.) some of the special functions of the TPM

are disabled again (privileges, or more precise, localities are lowered). This means

amongst other things, the stored hash values can not be reset anymore and any

changes to them will show. Related to this, it is also possible for the TPM to unlock

secrets based on those hashes — it will only be possible to access the secrets if the

correct hashes are computed (this is called sealing).

The fact that this process has happened on a target machine can later be proven

to other parties. In combination with the LCPs, this will make sure that only good

hypervisors will launch.

3.2 Establishing Trust in Software

In order to describe how to establish “trust” in software, it is first necessarily to

define the relevant terms and their relation to each other.

What is Trust in Software? The term “trust” itself is used in a variety of places

and functions. A common definition, when used for software systems and thus also

in this work, is given by the RFC 4949 [Shi07]:

Definition 3.1. Trust: A feeling of certainty (sometimes based on inconclusive

evidence) either (a) that the system will not fail or (b) that the system meets its

specifications (i.e., the system does what it claims to do and does not perform

unwanted functions).
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If this definition is applied to the software system in this work — the Jailhouse

hypervisor —, it can be narrowed down further. In order to trust the hypervisor’s

ability to manage its guests in the anticipated way, evidence is necessary that Jail-

house was correctly started and is in control of the virtualization features of the real

hardware.

The definition also indicates that this “trust” is not necessarily based on warranties

proven for the software system via means like formal verification. To distinguish

this more explicitly, the same RFC also defines:

Definition 3.2. Trustworthy : A system that not only is trusted, but also warrants

that trust because the system’s behavior can be validated in some convincing way,

such as through formal analysis or code review.

So, when this work talks about trusting a hypervisor, or more explicitly trusting in

Jailhouse, it states:

Definition 3.3. A third party trusts a system to execute Jailhouse when given

convincing evidence that Jailhouse was successfully started and able to establish its

control over the virtualization of the system’s hardware.

This also implies that Jailhouse has to be trusted to protect itself from other influ-

ences, much like normal operating systems are expected to do the same. Whenever

the system in question gives the convincing evidence in question, and the verifier

judges it to be correct, then Jailhouse is trusted to be still in control.

But what constitutes such evidence and how can it be provided to a third party in

a convincing way?

A common way for this is to provide the code identity of the system, and to

give a convincing prove that this identity really belongs to the system in ques-

tion [PMP11].

Describing the Code Identity of a System The state-of-the-art method to rep-

resent the Code Identity of a software is via a Cryptographic Hash, taken over the

code-binary itself and all its inputs — for normal application this also means all

libraries linked into it at runtime. Such a hash z, computed with a hash function

h(x) over the binary and inputs of a software x, is also called measurement in the

context of this work.
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Cryptographic hashes are chosen because they are Collision Resistant and One-

Way [PP10]. With those properties it becomes infeasible hard to calculate a given

code identity with another software than the one expected (intentional or uninten-

tional) — it is a very good identity relation.

The best time to take such a measurement is before the software starts to execute.

At this point, the hash will always be the same for the same code and input, even

across different platforms. For software like an operation system or a hypervisor —

software that takes over control of the platform — it is also important that the hash

is taken by the software in control before them. Otherwise the measured software

might influence the measurement or just lie about it. This in turn raises the question

if the software taking the measurement is trusted as well, and to answer this, there

has to be a measurement for this software as well.

The resulting sequence of measurements L is called Chain of Trust [TCG12]. The

software currently in control of the system sn is measured by its predecessor sn−1,

which in turn is measured by sn−2. Ultimately though, this sequence has a starting

point s0, which no matter if it is hardware or software has to be trusted without any

more evidence. This start-point is called the Root of Trust. If the chain is treated

as proof, then the root of trust can be seen as axiom — always true.

An example for this procedure is given in Figure 3.2 on the next page. It also shows

two possible applications of how the chain of trust and its measurements can be

used: Trusted Boot and Secure Boot [TCG07]. Like established before, the final

piece in such a chain has to be trusted to remain in control of the system and to

protect itself from being taken over without an additional measurement being made.

Depending on the software system, this may also mean that it has to measure every

piece of software which can influence it in a untrusted way, so that it could change

the trust decision of the trusting parties.

Usually, the involved hardware in this process is also treated as trusted without any

further prof. Together with the measurements in L it builds the Trusted Computing

Base (abbr. TCB) — all the code and hardware that needs to behave in the intended

way.

But in order to convince a third party, may it be the user of the computer or an

other computer system, that the hardware is currently executing the software system

resulting from the shown chain of trust, it is also necessary to find a way to store

this information and then to transmit it — both securely.
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Figure 3.2: Diagram showing a chain of trust and how it is applied in two scenarios:
Trusted Boot and Secure Boot. During trusted boot the measurements mx are
only appended into the chain L. With secure boot they are also compared to
a reference value and if they don’t match the system is halted.

Storing the Chain of Trust When storing the chain of trust L, it has to be made

sure that it can’t be influenced without being noticed. Any influence at all should

be limited to appending new measurements.

Cryptographic hashes can again be used for a part of the problem. The relevant

technique is called Hash Chaining and is also used in the TPM [TCG07] (later

introduce in this chapter). With hash chains, no measurement is stored directly

during the computations. Instead, a new measurement is first concatenated with

the previous value, and then the result is hashed again. Only then the final value is

stored into the “secure location”.

Lets assume the root of trust starts with an initial value of

L = 0;

it then measures the next software with the result m1. This value is not stored as

such, but instead L is computed as

L = h(0 ‖ m1);

and only then this value is stored. The measured software is then executed and
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repeats this, it measures the next software into m2 and extends L again as

L = h(h(0 ‖ m1) ‖ m2):

This process is repeated till the chain of trust is complete.

Because L is a cryptographic hash, and thus one-way and collision resistant, it is

infeasible to find any other combination of softwares, or values in general, that would

result in the same hash-value. Not even when the software is execute in a different

order:

m1 6= m2 =⇒ h(h(0 ‖ m1) ‖ m2) 6= h(h(0 ‖ m2) ‖ m1):

But this still leaves open the problem of finding a “secure location” to store L, so

it becomes impossible for any software to just overwrite it or assign a value directly

during the hash chain. Both would destroy the chain.

Convincing a Third Party After storing L in a secure location, the next problem

is to find a way to transmit it to other parties in a convincing way. In particular, the

problem is to convince the other parties that the sent hash value L really belongs to

the system in question and that it is the value computed and stored in the “secure

location”.

Convincing another person or system that a message is really from a expected part-

ner is a common problem in cryptography. It is commonly solved by either sharing a

secret that only the two communication partners know — symmetric cryptography

—, or by asymmetric cryptography [PP10].

In case of asymmetric cryptography, the system in question would use a secret

private key to sign the value L before sending both signature and value to the

asking party. This system or person has to be in possession of the shared public

key which belongs to the just used private key. Using this key, it can verify the

received message. Because the private key is only possessed by the trusted party,

the messages signed with it can be trusted to contain what is expected, and if they

contain a value for L that matches a value of a trusted code identity, the system

in question can be trusted to run the corresponding software. Any other outcome,

may it be a wrong signature — made with an other private key — or a value for L

that not corresponds to a trusted code identity, would lead to mistrust for the asked

system.
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But this leads to the question: how is the system in question supposed to store the

private key, so it will be unknowable to anyone else?

This problem, along with finding the “secure location” to store L, is difficult to

solve in software alone. While taking the measurements has been found possible

to implement purely in software [GCK05, Spi00], secure storage is still an open

issue [PMP11]. The solution is a hardware-based storage and will be introduced in

the next section.

3.3 The Trusted Platform Module

The Trusted Platform Module (abbr. TPM ) is a hardware module developed by

the Trusted Computing Group (abbr. TCG) [TCG07, CYC+08, PMP11]. It builds

the central piece in the TCG ’s initiative to specify a common approach for trusted

computing, with one target being to support trusted execution. The TPM itself

is specified in a platform neutral way [TCG11a, TCG11b, TCG11c] and its imple-

mentation for the x86 architecture is specified on its own in [TCG12]. Most of the

TPM enabled systems currently in the field are implementing the version 1:2 of the

specification; the test system available for this work also ships a chip of this version

— the further examination of the TPM is based on this version.

In the context of this work, the primary interest is focused on the TPM’s ability

to provide the “secure location” to save the chain of trust and its ability to gen-

erate verifiable messages from it, in the same manner as described in the previous

section.

Hardware Integration of the TPM On x86 the TPM is integrated by connecting

it via the Low Pin Count Bus (abbr. LPC ; specified in [Int02]) to the chipset of the

platform [TCG05]. In contrast to other I/O devices connected, it has no ability for

DMA or any other direct influence over the behavior of the system — it is completely

passive and only ever reacts on requests.

Because the TPM is designed to be inexpensive — one TPM chip costs about one

dollar [Cor10] — it does not require much computation power from the chip itself.

Timeouts to process single commands are specified from 750ms to up to 2s [TCG05].

The same holds true for the LPC Bus, which transmits a single byte in about 330ns

— in comparison to the 20 year old 32 bit PCI bus, clocked with 33Mhz, which
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Figure 3.3: Overview over the integration of the TPM into the architecture of a x86 plat-
form.

could transmit a byte in about 8ns, this is more than a magnitude slower. In general

this means that the TPM can not be used to process big amounts of data.

The specification also requires some guarantees against hardware attacks on the

TPM chip itself. It terms this as “tamper resistant”, more precisely this means that

the chip has to be permanently connected to the platform — the motherboard —,

so it can not be easily disassembled or transferred to another platform. Attempts

of such tampering with the chip shall be evident upon inspection of it [TCG07].

Furthermore, it also requires the TPM packaging to limit attacks like pin probing, to

gain knowledge of resident secrets, or electro magnetic scans, as form of side channel

attacks to gain information of the functions executing on the TPM. Concerning the

LPC bus, which was not designed exactly for this use, the specification only requires

it to resist simple attacks and otherwise would need “expertise and possibly special

hardware” [TCG11a].

Altogether, it is indicated that this should make it possible to certify a specific

TPM implementation according to the FIPS 140–2 standard about cryptographic

modules [FIP01], likely up to security level two. At the moment of writing, only one

such chip is known and it was only evaluated for security level one [NIS14].
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Figure 3.4: Overview of the components of a TPM chip.

3.3.1 Functional Overview

At the core of the functions, the TPM provides are three aspects: secure storage

of keys, secure storage for measurements and support for trusted reporting. With

those, it becomes finally possible to implement a chain of trust as described before.

But those are not its only functions, and for this work in particular two more func-

tions will become important: localities and NV RAM. A more detailed overview can

be seen in Figure 3.4.

The depicted function blocks correspond to those specified in version 1:2. The im-

plemented cryptographic algorithms in this version are limited to hashing, using the

old SHA-1 algorithm (output size is 160 bit), asymmetric cryptography (including

signing), using RSA with keys up to 2048 bits, and an own Random Number Gen-

erator with its own source for entropy. And although there is some non-volatile

memory available on the chip, the specification only requires it to be 1280 byte

big [TCG05].

Secure Storage of Measurements Like previously explained (3.2 on page 30), it

is important to have a secure location to store measurements during the build of the

chain of trust.

Because the TPM has only a very limited amount of storage available, it solves

this problem with the Hash Chaining algorithm explained in the same section. To

store the hashes, it provides 24 so called Platform Configuration Registers (abbr.

PCR). These registers are volatile, but mostly only reset during platform resets (the
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registers with the indices 16 to 23 can be reset during the runtime, using the locality

mechanism explained in 3.3.1 on page 38). Additionally, values can never be written

directly, but they are always concatenated with the previous value and then hashed

again — just as explained (the command is called TPM_Extend).

The PCRs with indices from zero to 15 (also called static PCRs) are used during the

boot phase of the system (explained in 3.3.1 on page 37). They store information

like the hash of the used BIOS, option ROMs, the used IPL, loaded OS, and for

each the used configuration. Those can not be reset during the runtime and will

reset during platform reset to zero. The remaining PCRs 16 to 23 (called dynamic)

will be explained later.

Secure Storage for Keys The next problem is how a system can store private

keys in a secure location, over a potentially very long time frame. Because of the

limited amount of non-volatile RAM, storing them on the TPM directly is not a

good option. Instead, the TPM is used to encrypt the private portion of such a

asymmetric key or, in case of symmetric cryptography, the whole key. And once

encrypted, the TPM will only decrypt them again in case a good authentication is

given — this could be a pass phrase, a specific value stored in a set of PCRs, or the

activation of a high enough locality. But again, for this operation it also needs a

secret key (a RSA key in the case of the TPM)!

There are two (RSA-) keys permanently stored on the TPM: the Endorsement Key

(abbr. EK ) and the Storage Root Key (abbr. SRK ).

The EK is stored on the TPM by the manufacturer and can never be changed.

It is the TPM’s identity and because the TPM is permanently connected to the

platform, it is the identity of that, too. Because this intimate relationship can result

in privacy issues, in case the public portion of the EK is used to permissive, its

function is restricted to signing certificates of other keys (they are called AIK; further

explanations will follow), stating: “this key belongs to the TPM with this EK”. With

the help of an external agency, the owner of the TPM can then request a second

certificate for this new key, stating: “this key belongs to a trusted TPM”; and has

thus decoupled the AIK from the EK. Ideally, there would also be a certificate stored

on the TPM that attests that the EK belongs to a confirming TPM chip, signed by a

similar agency, but this optional idea of the specification never prevailed [PMP11].

The SRK is created during the establishment of the TPM’s ownership. Initially,

the TPM is in an “unowned” state and the user has to first take ownership over it
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(TPM_TakeOwnership). This process establishes a shared secret between the owner

and the TPM (likely a password), and creates the SRK. Whenever the ownership is

revoked (requires the secret) this key is removed as well.

The private parts of both keys never leave the TPM, not encrypted, and in no other

circumstance, they are only used in operations on the TPM (the public parts can

be retrieved).

When an other key is generated on the TPM, then its private part, together with

other information, is encrypted with the public key of the SRK. Only then it is al-

lowed to leave the TPM. This technique is called binding or wrapping. And because

those bound keys are encrypted with the public part of the SRK and the corre-

sponding private part never leaves the TPM, they only ever can be used inside that

specific TPM1 (because of this, the SRK is also called to Root of Trust for Storage

(abbr. RTS )).

Next to the binding, it is also possible to specify additional criteria for decrypting

or using such keys: it is possible to specify a password; it is possible to specify

a set of PCRs, and only if those PCRs have the value, as at the time the key was

created, the key becomes usable (also called sealing, security is based on the collision

resistance of the hashes); and finally it is possible to specify a locality that has to

be satisfied.

Next to normal RSA keys, the TPM also provides some that have a special meaning

for it. One important kind are Attestation Identity Keys (abbr. AIK ), RSA keys

that are only used to sign information and with that, attest that those information

belong to the TPM to which the AIK is bound. They are created and bound directly

to the SRK of the TPM in question. The information that they are for this special

purpose is encrypted along with the private part of the key. As an option, they can

also be certified with the EK’s certificate as parent (as described before), if there

was one created for it2.

Trusted Reporting With those two aspects solved, it is possible to construct a way

to send convincing evidence to users or other computers about the code identity of

1It is also possible to create migratable keys or encrypt/decrypt arbitrary data, but this is out of
context for this work.

2It is, of course, also possible to create a private certi�cate chain, using the public key of the EK
and the public keys of the AIKs, but for this work it is su�cient to know the public portion of
the key.
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the platform. For this, the TPM provides a specific command: TPM_Quote; and calls

this procedure Remote Attestation.

A quote is not much more than what is described in 3.2 on page 31. It is made up

from a set of PCR values, a nonce that was provided to the challenged party by its

challenger, and a signature of both which is created with the private portion of an

AIK bound to the challenged TPM. The nonce is a random number. It is created

by the challenger only just at the time he requests the remote attestation. Because

it is included in the signature, the signature can not be used for any other request

(they will have other nonces) — avoiding replay attacks.

This is all done on the TPM, and afterwards the challenged party sends the result

back to the challenger. He in turn can then verify the quote by testing the signa-

ture with the known public portion of the AIK (as with other asymmetric crypto

algorithms, the public portion has to be obtained in a secure way), and examine the

set of PCRs values, if they match a trusted set of measurements.

Because the AIK is bound by the SRK of the TPM (its private portion is encrypted

with it), and the SRK never leaves the TPM (not even encrypted), it is infeasible

complex to forge the signature of the PCR values and the nonce outside of the TPM.

This means, the operation of taking the PCR values and making the signature

have to happen on the TPM to which the AIK belongs. And by knowing the

public portion of this AIK, the verifier can impeccable determine to which TPM the

signature belongs — or if it belongs to a TPM at all.

Any other outcome — a invalid signature, the wrong AIK, a set of PCR values not

matching a valid set of measurements, or even just a timeout — can then be treated

as strong sign to mistrust the challenged system.

This mechanism, along with the AIK/EK-Certificates, is also called the Root of

Trust for Reporting (abbr. RTR).

Chain of Trust using the TPM Next to these 3 main features of the TPM itself,

the TCG also defines two possible ways to create a convincing chain of trust (see 3.2

on page 28): a static [TCG12] and a dynamic [TCG13] chain of trust.

Because Intel TXT is one implementation of the dynamic chain of trust, its expla-

nation is deferred to 3.4 on page 40. Here, only the static will be explained. An

overview of how it works can be seen in Figure 3.5 on the next page.
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Figure 3.5: Diagram showing the 
ow of measurements and software execution during the
static chain of trust. The chain is started by a special, embedded piece of
software, the Static Root of Trust of Measurement that is placed directly at
the reset vector of the system.

The root of trust in this chain (also called the Static Root of Trust of Measurement

(abbr. RTM )) is a small piece of software directly loaded after the platform re-

set/start. At this point the platform is trusted to be in a good state. This software

starts up the TPM and measures the BIOS and its configuration into PCR zero (it

may also measure itself). After that, it relinquishes control to the BIOS, which in

turn measures any optional ROM with the corresponding configuration. This chain

is continued unbroken till the IPL has measured and launched an operation system

(this may also measure applications, but is not required to).

With this chain, it can, for example, be proven to the user that the system was

in a good state during the boot and loaded the expected operation system. With

the assumption that the OS can protect itself properly, the user can thus trust the

system. But it also means that all components during that chain become part of the

TCB and have to be trusted. With modern OS kernels reaching into tens of millions

lines of code [DWQM14], this becomes is a considerably large amount, coming from

a big variety of sources.

This is one of the main motivations for the use of a dynamic root of trust, as

explained later.

Localities To better support the dynamic chain of trust, TPM 1:2 introduced the

concept of localities, five over all (0–4) [TCG12]. They can also be seen as different

levels of privileges when talking to the TPM. And as mentioned before, the TPM
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allows localities as one kind of authorization criteria — keys, NV RAM and other

commands can be set the require a certain locality to be used.

The highest locality (4) can only be used by trusted hardware — never software

— and has the most privileges. It can, for example, use this privilege to reset

certain PCRs (16–20 and 23). To protect it from software, the specification [TCG05]

requires the hardware manufacturer to implement explicit security measures — it

may be done by adding special bus cycles to the LPC bus. But the exact mechanism

is not specified and could not be found3, the manufacturer thus have to be trusted

to implement this securely to be compliant to the specification.

The localities three, two and one are to be used by software of different trustworthi-

ness, but neither is specified what this exactly means, nor how those are protected.

It is up to the implementation to specify this — it will later be shown how TXT

manages this issue.

The remaining locality zero is used by the static chain of trust and legacy applica-

tions.

NV RAM The last TPM element, this work makes use of, is the Non-Volatile Ram

(abbr. NV RAM ). Although not much (at least 1280 Byte), it can be used to save

and protect a few information permanently on the platform.

To use the RAM, the owner — and only the owner — has to define areas in it

(also called indices). And during that, he can decide, similar to the keys, what

authorization it requires to write or read from the defined area (with the same types

as with the keys: (owner) password, PCR state, locality). Afterwards, everyone

possessing the correct authorization can use the RAM at will.

Like the other parts of the TPM, it is accessed through the LPC interface and thus

quite slow. And additionally to the already scarce space required as minimum in

total, the specifications also requires some predefined areas for other purposes. This

reduces the required minimum space for the user to 512 byte [TCG12], and therefore

requires good care about what information are to be stored in it.

3Upon personal enquiry to Intel, it was said that this information is con�dential.
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3.4 Intel’s Trusted Execution Technologies

Till now it was shown how it is possible to implement a chain of trust with the

help of the TPM and the support in the variety of firmwares of the specific plat-

form. This static chain of trust stems from the root of trust in the hardware itself

— it is assumed to be in a good state after reset — and the small piece of soft-

ware directly loaded at each reset — the static RTM. This RTM is specified to be

immutable [TCG12], and it will measure every unintended change in the following

code into one of the TPM’s PCRs. Hence, if the hardware and the RTM is trusted,

then this state is a good starting point for the chain, and if this chain remains un-

broken and with only expected measurements, till it is in the desired environment

(for example, an OS or a hypervisor), then the system in question can be trusted.

But this requires to trust every piece of software that contributed up to this final

point — the TCB — and this might include code in the size of multiple tens of

millions lines. In addition, it requires support for it in every piece along the way, or

it might miss critical measurements.

Those two points are the major motivations for the dynamic chain of trust. In this

scheme the chain doesn’t start at boot time — although the static RTM still does its

measurements as intended, as said, it is immutable —, but instead, it can be started

at any time during the operations of the system. The main obstacle for this is, as

explained in 3.2 on page 28, each piece of software ran before the new root of trust

can potentially influence it. In this new situation, even the hardware can influence

it, for example, by unintended DMA accesses — the exact hardware state can not

be known beforehand. The DRTM (Dynamic RTM ) needs a similar known-good

state of the hardware as the static one, to start operations [TCG13].

This led to the implementation of processor extensions on both platforms: Intel

and AMD. AMD’s implementation [AMD13, AMD05] has been introduced together

with its extension for hardware virtualization and is also documented alongside it.

In this work however, the focus is on Intel’s implementation TXT [Int14c, FG13] —

both share the same concepts, but are implemented differently, and at the time this

work was started, Jailhouse didn’t have fully functional AMD support.

This section will give an overview of the components involved in TXT and how it

enables the environment for the DRTM. Details about the resulting requirements

for a software that wants to implement support for TXT will be given in Chapter 5

on page 61.
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Figure 3.6: Overview over the software components involved in Intel’s dynamic chain of
trust. The \Gap" can represent any software running after the boot and before
the DRTM.

3.4.1 Overview

The components involved and the resulting chain of trust can be seen in figure 3.6:

• Hardware: TXT is an optional processor and chipset extension (it exis-

tence can be checked via CPUID [Int14a]). In cooperation with the platform’s

IOMMU (Intel’s VT-d) and TPM, it is responsible to initialize the known-good

state to start the DRTM and to take the first measurement.

• Static Chain: The measurements that are made after the system reset by

the static RTM are still made and can also be used in subsequent Quotes.

• LCP: The Launch Control Policies are a list of rules in a format also invented

by Intel [Int14c, FG13] (simplified, it is a list of hashes). It is possible with

them to enforce different checks on the system in the ACM : in case this feature

is activated, only a MLE whose measurement matches one stored in the LCP

can be started, any other would cause a system reset. The information whether

it is activated is stored securely in the TPM’s NV RAM (more details will be

presented in 3.4.3 on page 48).

• ACM: The Authenticated Code Module is a small firmware that is provided

by Intel or the platform’s manufacturer (it is also frequently called SINIT ).

It is the first software called after the DRTM has established its environment,

and it is responsible to check the setup of the MLE, measure it (depending on

the LCP, enforce rules) and ultimately jump to the entry point of the MLE.
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• MLE: The Measured Launched Environment is the target software and its

configuration. It is launched by the ACM, and it is the first piece of software

that is provided by the system’s user. More details about the target MLE in

this work will be given in Chapter 5 on page 61.

This list also summarizes the whole TCB of a successful measured launch (start-

ing TXT and entering the MLE). It does not include any components ran in the

Gap before the launch, components of the static chain are optional, and compo-

nents running after the launch are not included, as long as the MLE isolates itself

properly.

That means, if this technique can be used with a hypervisor — or any other software

for that matter —, it is only necessary to trust the hypervisor itself, the ACM and

the involved hardware (including the TPM). Out of those, hardware and TPM are

also included in the static chain and the ACM can be compared to the initial software

run after the system reset. Compared to the static chain, that in this work would

also include the whole operation system, this reduces the TCB by multiple million

lines of code and emphasizes the trust mainly on the launched hypervisor and its

functionality.

3.4.2 Intel’s Safe Mode Extension

In order to start this new dynamic chain, the system has to establish a known-good

state in which the hard- and software can be trusted, and in which measurements

and the measured software can not be influenced.

This is done with the new instruction GETSEC, introduced with TXT into Intel’s

ISA [Int14a]. GETSEC is part of the Safer Mode Extensions (abbr. SMX ). It imple-

ments the processor-related features of TXT.

Although starting the measured launch is the major functionality of GETSEC, it also

implements other functions. Those are selected via a value put into the EAX register

before calling it and they are currently made up from 8 different sub-functions. For

the use in this work, the following are the most important:

0. CAPABILITIES is similar to CPUID and returns bit vectors containing bits set

for TXT functions that are available on the system.

4. SENTER starts the measured launch and is the main functionality at this point.

A more detailed description can be found below.
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5. SEXIT ends a measured environment previously erected by a call to GETSEC[SENTER].

This includes re-enabling events that have been masked before and not already

unmasked in the MLE, and it closes the private TXT config area (see 6.1 on

page 76).

6. PARAMETERS is used to retrieve information about the different parameters of

the TXT implementation on the questioned processor (how big can the AC

module be, what versions of it are supported, which memory caching type can

be used for it and more; at the moment there are only a few parameters for

TXT itself).

7. SMCTRL controls the measured environment from within the MLE. Currently

this is only used to re-enable SMIs after the launch.

8. WAKEUP wakes sleeping processors after they have been halted for the measured

launch (explained below).

Measured Launch with SENTER The measured launch can only be done with

the Bootstrap Processor (abbr. BSP, often also called ILP). This is the processor

that was first activated after the system reset and initiated the remaining system,

including the wakeup of the other processors (also called the Responding Logical

Processors (abbr. RLP)).

Once the system has loaded the ACM into the correct memory position and done the

other necessary setup steps (see 6.3 on page 80), the BSP can make the GETSEC[SENTER]

call, together with the physical address of the ACM and its size as parameters.

First off all, GETSEC will check several states of the system to see if the call was

legal. This includes basic checks, such as, if SMX is unavailable or not enabled, if

another SENTER is already running and no yet terminated (with SEXIT), or if the call

was made from within the VMX non-root operations. Furthermore, it will check if

the system, especially the chipset, has all the necessary components, such as TXT-

capabilities and a built-in TPM. Should any of these checks fail at this early state,

then the call will return to the calling software with an exception. Errors later during

the launch will always result in a system reset (also referred to as TXT-reset).

After these preliminary checks, the processor will rendezvous all other available

processors in the system and disable all but the BSP (this goes as far, as to disable

their capabilities to do any memory or I/O transactions). This is done regardless
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in what state the RLPs were before the BSP called GETSEC, and they can only be

woken again later in the MLE. At this point only the BSP is still awake.

The BSP will now disable all external events, including the INIT#, A20M, NMI# and

SMI# pins, but also any normal IRQ (via the IF flag in the EFLAGS register). To

prevent information about the execution to leak, it also disables all debugging and

performance counting features of the processor and clears their content. These are

typical side channels that can be used to analyse the systems behavior without direct

access at the time of the measured launch.

Before the launch, the ACM was loaded into a reserved memory area called the

DMA Protected Range (abbr. DPR) by the MLE setup (see 6.3 on page 80). This

area is allocated and locked in place by the BIOS and is handled specially by the

IOMMU: each memory access from an external device to this area is blocked. In

addition to this, the BSP will load the ACM from this area into an internal authen-

ticated code execution area. In this area, it is secured from all other processors and

external devices. This guarantee is given by the Intel Manual [Int14a], and the TXT

manual [Int14c] furthermore states that this area is located within the processor.

Because the processor is not specified to test the DPR before it measures the ACM,

it is important that this guarantee is held. Otherwise, it might be possible to

influence the ACM via DMA after it was already measured, because the DPR was

not configured correctly or the ACM was not placed inside this range. In order to

later trust the whole system, the processor has to be trusted in this. And because

all other processors are disabled, the only source of changes to this area can now

come from the BSP itself. This completes the save environment for the measured

launch, an overview over the resulting architecture can be seen in Figure 3.7 on the

facing page.

Using this environment, the BSP will now check if the loaded ACM has a valid

signature. For this, it will use a (RSA-) signature saved in the ACM binary itself and

a public key known to the processor (through the TXT capable chipset). Only if the

signature signs the loaded module and is made with the private key corresponding to

the public key known to the processor, GETSEC will continue the execution. Unless

the private key Intel uses to sign their ACMs is disclosed, this will prevent any other

binary from acting as an ACM.

Furthermore, the BSP will now activate locality 4 of the attached TPM, reset the

PCRs 17–22, extend the hash of the checked ACM into PCR 17 and close the locality
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Figure 3.7: Diagram showing the state of execution on a system after GETSEC[SENTER]

has erected its save environment for the measured launch. Only those parts
painted with drawn through, black lines are still active and able to interact
with the remaining processor and the memory.

4 again. Additionally to the signature check, this can later be used in a TPM Quote

during a remote attestation to attest that the ACM was really executed.

Finally, after this measurement is done, GETSEC will bring the processor into a

state as documented in [Int14a], open locality 3 and start executing the loaded and

authenticated ACM.

The Authenticated Code Module Details about the ACM itself, internal details

about its function, are not specified. Because it is closed source, only the effects of

it can be known at this point.

From the different error states specified in the TXT specification and the data given

to the MLE via the TXT heap (see 6.1 on page 77), it can be derived that it does

extensive checks on the MLE-setup (done before the call of GETSEC), that it collects

information about the memory and processor layout of the system (ACPI’s MADT),

and that it provides these information in a validated form to the MLE — so it doesn’t

have to use unvalidated data from the BIOS or other firmwares. Additionally, it can

be configured to enforce rules in form of the LCPs onto the system (see 3.4.3 on

page 48).
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Any failure in those checks will result in an immediate system reset to prevent

compromises — the system reset will also reset the TPM’s PCRs.

Finally, it will measure the configured MLE, extend this hash into either PCR 17

or 18 (depending on a configuration option the MLE-setup can specify), apply the

processor state described in 3.4.2 on the next page, close locality 3, open locality 2,

and jump into the MLE code. From this point on, the MLE will be in control of the

system and has to bring up the system from the applied state into its own defined

work environment. Those issues will be discussed in Chapter 5 on page 61.

How the ACM Measured the MLE In contrast to the measurement done by

GETSEC, the measurement done by the ACM is not specified by physical addresses

— it will not use a physical address as start point and a size in bytes to hash a

physical continues memory space.

Instead, it will use a page table provided to it by whatever code does the setup

before the invocation of GETSEC[SENTER] (this table is also frequently called the

MLE page table). To specify what address range in this table represents the MLE,

it will use a linear address as start and another linear address as end address. Both

are specified in the MLE header from within the MLE (see [Int14c] for a full spec.),

next to another linear address used as entry point for the final jump. By taking

these information from within the MLE, they are measured as well and can thus not

be changed unnoticed.

As general format for the page table a regular PAE page table layout is used. It is

however restricted by a set of rules, which are specified to be checked by the ACM

during the launch [Int14c]. The most important for this work are the following (refer

to the spec. for the full list):

• it may only contain 4 KB pages;

• all linear and physical addresses must be below 4 GB;

• when using a breadth-first search on the page table, it must produce only

increasing physical addresses;

• after the first valid page, there may not be any invalid pages till the end of

the MLE — there may not be any gaps in the (linear) mapping of the MLE.

Both, the first valid page of the MLE and its end, are taken directly from the linear

addresses stored in its header. The process of the measurement itself is visualized
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Figure 3.8: Overview of how the ACM utilizes the MLE page table during the measurement
of the MLE.

in figure 3.8 — it will lookup the first valid page and then measure every page till

it finds the end address.

By deploying this scheme, it is possible to distribute the MLE over different areas

of the physical space. In case of large MLEs, this solves the problem of finding a

large enough continue physical location for it. Because Jailhouse already requires a

reserved, continues physical space before it starts, this table would not be necessary

for the implementation in this work.

The Common Processor State Set by the ACM As the last action of the ACM,

before it yields control to the MLE, it will apply a common processor state to the

BSP. By doing so, it creates a known baseline that can not be influenced from the

outside — not by any legitimate setup, but also not by any attacker. Afterwards, it

is the MLE’s task to work with this state, or to bring it back into a suitable state

for itself, but it can always trust the base state.

The most important changes that are applied are listed in Table 3.9 on the following

page.

It is important to note, that this also implies a change to the unpaged protected mode
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Resource ILP / BSP

CR0 PG = 0, AM = 0, WP = 0, CD = 0, NW = 0, NE
= 1, PE = 1, others unchanged

CR4 00004000h

EFLAGS 000000XXh (XX = undefined)

EIP, EBX the address of the first instruction in the MLE (this
address is listed as linear address in the MLE’s
header, along with the start and size of the MLE)

ESP, EBP, EAX, EDI, ESI undefined

ECX pointer to the MLE page table

CS base = 0, limit = 4GB, executable code

DS, ES, SS undefined

GDTR unchanged from ACM

IA32 EFER 0

Figure 3.9: Table showing the changed architectural state of the processor after the ACM
gives control over the system to the MLE. This table lists not every change, a
complete version may be found in [Int14c].

(32 bit), no matter in what operating mode the system was before the measured

launch. Furthermore, there is no valid data segment set, hence it is not possible to

write anywhere in this environment.

3.4.3 Controlling the Launch of Software with the DRTM

Implementing support for this measured launch will make it possible to initiate a

trusted boot from a secure hardware state, at any given point during the lifetime of

a system — measurements of each component are stored, but no rules are enforced.

This is also depicted in Figure 3.2 on page 30 (at the top). After this procedure,

the user of the system or a remote machine can verify the result of the launch with

the use of remote attestation (see 3.3.1 on page 36).

In addition to this, TXT also supports the scheme of secure boot — the measure-

ments are not only taken and stored, but also compared to a reference value (depicted

in the same figure as before, but at the bottom). When TXT is used on the real

hardware (compare to the opposite in 7.5.1 on page 113), this scheme can enforce
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Figure 3.10: Overview over the storage concept of LCPs.

that only correct setups of the MLE can ever be launched with GETSEC, and hence

get access to locality 2 of the TPM (along with other methods, this may be used

as authorization for secrets). If no match is found for the measured MLE, then the

system is reset by the ACM.

Whether “only” the trusted boot is used, or the secure boot, is decided by a small

structure stored within the NV RAM of the system’s TPM. By specifying a strict au-

thorization for this index of the RAM, it becomes impossible to change this decision

as unauthorized user.

The mechanism realising this are the so called Launch Control Policies (abbr.

LCP) [Int14c]. They are split into two part: one is the just introduced part stored

in the NV RAM, and the other is, simply put, a list of acceptable hashes for different

components of the measured system.

LCP Storage The basic storage scheme can be seen in Figure 3.10. It is made up

from two parts: the Policy and the Data.

The LCP policy is a structure 54 bytes big and is required regardless of the system

doing a secure or trusted boot — it is the part deciding whichever scheme is done.

Next to this decision, it also contains fields for version requirements on the ACM,

what hash algorithm should be used (as with the TPM 1.2, it only supports SHA-1)

and most importantly, the hash of the data part of the LCP (if no secure boot is

done, this can be left blank).

Like explained in 3.3.1 on page 39, the index to store the policy has to be created

by the owner. In doing so, he also can decide on the access privileges for the index.

There are no exact requirements for the privileges. But to secure the data part —

the hash of it —, it should not be writeable by anyone else. One example could be:
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Element Type Description

MLE Contains a known-good hash of a MLE.

PCONF A list of accepted PCR values. This may be used to specify
acceptable outcomes from the static chain that are stored in the
PCRs 0–15.

SBIOS Can be used to store hashes of BIOS images, as they would be
measured by the static chain. But this is not specified any
further, and as long as the user has no intimate knowledge of
this value from his BIOS manufacturer it is not usable.

Custom May be used by the MLE later during the measured launch and
can be made up from any data the MLE designer sees fit.

Figure 3.11: An overview over the possible hashes that can be stored in a LCP data list.

writeable only by the owner, readable only with locality three and two (ACM and

MLE).

The LCP data is made up from multiple lists of acceptable hash combinations. This

is not only limited to hashes of the MLE, but can also contain hashes of other system

parts that the ACM will check upon (an overview can be seen in Table 3.11). Other

than that, it can also contain a signature (and the corresponding public key) made

by the issuer of the LCP.

At runtime, the LCP data has to be loaded into the main memory before issuing

GETSEC and starting the measured launch.

Securing the LCP Data To secure that these data are not manipulated before used

by the ACM, they are bound to the TPM. This done by storing a measurement over

all hash lists in the LCP policy part.

Such a measurement is a hash of the concatenated individual measurements of each

stored list. These, in turn, are either just a hash of the list, or, in case the list

contains a signature, it is the hash of the public key whose private counterpart

made the signature. This makes it possible to exchange a list without alternating

the LCP policy, as long as the issuer is in possession of the private key to make the

proper signature.

Gained security? However, we will later see (in 7.5.1 on page 113) that the LCPs

do not add much security to the system; in essence, it still is required to do a remote
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attestation to prove the system’s state.

They acts as gate keeper if the measured launch is done on the real hardware with

the proper instructions. In this case, they also adds flexibility, and because of the

signature mechanism, they are not complex to update and to maintain.

In contrast to this, AMD doesn’t provide any such feature in its own implementation

of the dynamic chain of trust [AMD13, AMD05]. This implementation does only

provide the known-good hardware state and the measurement of the MLE. All other

features have to be implemented inside the source for the MLE.
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4 Related Work

Trusted computing and virtualization are very big field with a variety of applications.

The principles of their working were shown in Chapter 2 on page 5 and 3 on page 25.

Additionally, it was introduced in 3.4 on page 40, how Intel TXT can improve the use

of these technologies in a software system. Later on, the requirements for designing

and implementing a solution using these improvements will be shown.

But next to the application in this work, to implement Intel TXT for a hypervisor

like Jailhouse (see 2.3 on page 15), there are also other projects that want to make

use of TXT.

In this chapter, some of the most prominent examples of these projects will be

introduced shortly, and it will be shown how they differ from the approach in this

work. The start will make TBoot in Section 4.1, Intel’s reference implementation

of TXT. It provides an alternative way to boot a classic operating system, with the

added possibilities provided by the dynamic chain of trust. Following that, Flicker

will be introduce in Section 4.2 on page 55, a framework to execute small specialised

applications from within a running operating system and the added potential to

remote attest their execution. In Section 4.3 on page 57, an improvement upon this

concept, the hypervisor TrustVisor, will be presented. It follows the same idea of

Flicker, but with a hypervisor started directly after the boot process (in contrast to

Jailhouse). And finally, in Section 4.4 on page 58, this chapter will finish by giving

some extra directions for material concerning trusted computing.

4.1 Trusted Boot with TBoot

TBoot [FG13, tbo] can be seen as an extended IPL and is Intel’s reference imple-

mentation for TXT. Its basic architecture can be seen in Figure 4.1 on the following

page.
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Figure 4.1: Diagram showing the start of Linux with the support of TBoot.

TBoot is loaded directly by the system’s IPL (any boot loader that supports the

multiboot specification [OFBI10]), at any 32 bit address above one megabyte (de-

rived from the ELF header of the image). Any argument that it needs, for example

command line options, the system’s ACM and the Linux kernel image, are loaded

alongside the image1. After this, the IPL will launch TBoot. This happens after

the static chain has finished and thus the IPL doesn’t have to support TPM — for

example, any unmodified Grub [Oku12] will do.

TBoot will then launch the dynamic chain by doing the proper setup and calling

GETSEC[SENTER] with the loaded ACM as argument. The MLE though is not yet

the Linux kernel, this would need several modifications to its loading process (as

will be shown later). Instead, the TBoot image itself is also the MLE that will

be launched by the ACM, once it has finished. This step makes it also possible to

include TBoot itself in the applied LCPs and thus include it in the system’s TCB.

Other than that, the LCPs may also contain any other element that is listed in

Table 3.11 on page 50.

One custom element TBoot specifies and adds is the Linux kernel image. Once

TBoot has started and done its setup in the trusted environment, it will go on and

look up this custom element. If it finds any, it will compare the given Linux kernel

image with this element’s hash and proceed only if they match.

The final step after this is to extend the kernel’s measurement into PCR 19 and

start the kernel.

Afterwards, during the runtime of the launched Linux, the user can make use of

any available TPM software stack to implement the remote attestation and use the

1Both loads are part of the multiboot speci�cation, which makes it also possible to start without
any 16 bit code.
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Figure 4.2: Diagram showing a Flicker session. The Linux that started the session is
completely disabled during the dynamic chain of trust and will only be re-
enabled once Flicker has �nished.

measured values, made during the just explained dynamic chain of trust.

4.2 Running Small Applications in a Trusted

Environment with Flicker

Flicker [MPP+08] takes a completely different approach to use the new dynamic

chains. It was one of the first projects that made practical use of TXT and its

counterpart from AMD. The target is not to gain trust in a system controlling

software, like an operating system or a hypervisor, but to gain trust in a small

application — also called a PAL (Piece of Application Logic) —, the advantage being,

that only trust for the small TCB is necessary in order to trust the application.

A sample session of this can be seen in Figure 4.2. Flicker is started during the

execution of a normal operations system (it supports Windows and Linux). Because

it makes use of the SMX operations, it requires a small driver-like part in the

operating system’s kernel to gain the proper privileges. This driver will allocate

the memory and load the target Flicker image and the system’s ACM. Once it has

done all the other necessary setup steps it will start the session.

The Flicker image is constructed from an initial setup part (the core) and the PAL.

While the core is always 32 bit x86 code, the PAL can be anything, but has to start

with 32 bit and do any further setup itself. At runtime the two interact with each

other through call gates — the PAL runs at ring 3.
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Starting with the session, the driver disables all but one processor core (the BSP)

and saves their execution state into a private area. It then does the appropriate call

to start the dynamic chain of trust. This will cause the measurement of the ACM,

and following that, the measurement of the Flicker image into PCR 17 and 18; and

once done, the control is given to the Flicker core — it does not make use of Intel’s

LCPs.

The core does only do a minimal setup. It does not rely on virtualization to protect

itself, but it uses segmentation and x86’s privilege levels to encapsulate the PAL

into ring 3 before executing it. During this execution, the PAL can do everything

that its privilege level allows and additionally it can also make use of the TPM in

any way it sees fit. Once finished, it jumps back to the core through a call gate, and

this will finish up the session by extending a well-known value into PCR 17.

Only then it returns control to the Flicker driver and this will restart the previ-

ously stopped processors and restore their original states. That also means that the

original OS is completely stopped during the session.

Using remote attestation, the user can then prove that the PAL has run and, depend-

ing on the PAL’s application logic, other properties about the finished run — the

PAL may decide to extend values to other PCRs. The final extend of the well-known

value will prove that the PAL has finished running — PCR 17 can only be extended

in locality 4–2, and these are only active during the dynamic chain [TCG05]. Any

sensitive data of the PAL can be secured by the TPM’s sealing and binding features,

but this is the PAL’s responsibility.

While Flicker reduces the TCB of the application in question drastically (it will only

contain the Flicker core, the PAL and the provided ACM and hardware for TXT), it

also imposes some drastic restriction. Like explained, the normal operations of the

system are completely blocked during the session, and the setup and launch have to

be redone for each run. It will later be shown in 6.8 on page 97 that this adds some

considerable overhead. Additionally, the current implementation is only able to run

on 32 bit operating systems, reducing the field of application further.
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Figure 4.3: Diagram showing the execution of TrustVisor with Linux as guest operating
system and one PAL as part of the dynamic chain of trust.

4.3 TrustVisor: a Hypervisor for Minimizing

Application’s TCB

TrustVisor [MLQ+10] aims for the same target as Flicker, it tries to minimize the

TCB for small applications (PALs). But instead of doing the measured launch every

time a PAL shall be executed, it is only done once for TrustVisor itself. This then

will protect itself by using the hardware virtualization techniques introduced in 2.2

on page 7, making it a hypervisor as well.

This process begins at the same point at which TBoot starts, right after the boot

loader (as can be seen in Figure 4.3). It also behaves largely like TBoot in this

phase. The IPL loads TrustVisor, which will initially bootstrap itself and setup the

dynamic chain of trust. It will then do the measured launch and start the main

TrustVisor application — resulting in measurements being taking into the system’s

TPM.

At this point TrustVisor and TBoot diverge. While TBoot will yield control over the

system to Linux, TrustVisor will setup itself as VMM, controlling the root-operation

mode of the system and its IOMMU. With these techniques, it will only protect itself

and the later registered PALs, all other operations and control of the system are

given to an (unmodified) regular operations system like Linux or Windows. These

will operate like they would normally do, with the difference that TrustVisor defines

special traps (hypercalls) that make it possible for normal applications to interact

with the VMM. Their main purpose is to start PALs and to receive results after

they have finished.
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During the creation of a PAL on TrustVisor, the VMM will unmap all physical

addresses belonging to the PAL from the extended and IOMMU page-tables of the

guest operating system, protecting them from any unauthorized access. After that,

the PAL can be invoked and the VMM will let it execute, separated through the

hardware protection from the untrusted operating system and any DMA device.

Because of this, McCune et al. argue [MLQ+10] that as long as the user trusts the

hardware and the VMM to uphold this separation, then the operating system is not

part of the PAL’s TCB anymore, reducing it to the hardware, the VMM and the

PAL itself. This still holds true if more than one PAL is created on the system; it

is the VMM’s responsibility to separate these from each other, too.

Unlike with Flicker, this process doesn’t require repetitive use of the measured

launch, resulting in a better performance. But also unlike Flicker, it is not pos-

sible to start TrustVisor during the runtime of a normal operating system, it may

only be started by the IPL. And lastly, another shortcoming it shares with Flicker:

it currently supports only 32 Bit operating systems as guests.

4.4 Other Works

Next to these works, mainly on the issue of making use of the new dynamic chains

of trust, there is also constant work on other issues surrounding the topic of trusted

computing. Parno et al. give a very comprehensive overview over this field in their

work “Bootstrapping Trust in Modern Computers” [PMP11].

One particular issue, that also concerns this work, is how to gain knowledge of

the TPM’s public keys and take ownership over it. This process was described it

Chapter 3 on page 25. To gain trust in the system in question, it is necessary

to provide convincing evidence, and one part of this evidence is to prove that the

provided measurements are taken on the same system and are stored securely in

the TPM. This evidence is given by using the Quote mechanism, which signs the

measurements with a special key (an AIK ), of which the public part is known to

the verifying party and the private part is only de- and encrypted in the TPM to

which it belongs.

The security critical question in this process is: does the known public part of the

signing AIK really belong to the TPM in question? One possible answer could be the

TCG’s certification system that roots in the certificate for the TPM’s Endorsement

58



Chapter 4. Related Work Benjamin Block

Key, certifying that the EK belongs to a trustworthy TPM. If this would exist, then

it could be used to certify, for example, that an AIK belongs to the TPM and thus

is only used to sign measurements stored in it. But in practice this system never

caught on [PMP11] (for example, the test system available for this work didn’t

contain such a certificate)

Because of that, the only remaining way is to retrieve the public AIK at the time it

is created and to trust its authenticity as a fact. The same problem applies to the

process of taking ownership over the TPM: at the time this is done, there can not

be any evidence that the system isn’t compromised already, because the TPM is not

yet fully functional (a chicken-and-egg problem). As of now, it was not possible to

find a satisfying solution for both of these problems.

59





5 Design of the Trusted Hypervisor

Execution

Up until now, this work has shown what the new virtualization techniques on x86

can accomplish: it is now possible to implement virtual machine monitors that

can perform processor and I/O virtualization with minimal emulation efforts, solely

through the use of hardware. This reduces the amount of necessary source code for

such a VMM drastically.

But, with the example of Jailhouse (see 2.3 on page 15), it was also shown how

using these techniques can raise the importance of a single piece of software, up

to be the single point of failure for a potential high number of depending guests.

Therefore it was shown in Chapter 3 on page 25, that in order to trust this system,

there has to be a way to provide convincing evidence that the correct hypervisor

was executed and has not yet exited — with the requirement that the hypervisor

can protect itself sufficiently during its runtime. The method chosen in this work

to make this process work — Intel TXT — was then introduced in 3.4 on page 40,

along with the process involved to create an environment to securely measure and

store hashes about the loaded piece of software. Because TXT does not require a

continues process of measurements — from the beginning of the boot process, up

to the point where the hypervisor is launched — the resulting TCB will not have

to contain as many components, but will only consist of the involved hardware, the

ACM and the launched software.

Combining this gained knowledge, this chapter will present a design for a hypervisor

that can be started with Intel TXT, during the runtime of a already running oper-

ating system. After the measured launch, it will then bootstrap the system again

and resume the previously executed operating system as one of its guests. The main

example for such a hypervisor in this work is Jailhouse, and the design will thus be

fitted for its requirements and already existing architecture (see 2.3 on page 15).
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Starting in 5.1, an overview over the solution created in this work will be shown,

including all general steps and components it has to make and makes use of. After

that, in 5.2 on page 64, it will be defined what the MLE for Jailhouse consists of

and how it is structured. In the last three Sections 5.3 on page 70, 5.4 on page 72

and 5.5 on page 73, the responsibilities of the main components in the design will

be specified.

5.1 Design Overview

The general overview over the designed process to start Jailhouse with the help of

Intel TXT can be seen in Figure 5.1 on the facing page. All components of this

figure that are shaded in gray have been changed or were added to Jailhouse in this

work to make the measured launch possible (a more in depth description of each

will be given in the sections to follow).

First of all, the MLE has to be assembled, and it has to be decided what the

contents of this environment shall be, allowing for the requirements raised by TXT

and Jailhouse to be fulfilled. The result here consists of a TXT stub — the piece

of code where the ACM will jump to, logically separated from Jailhouse —, the

Jailhouse image, a gap for its per-CPU areas and its complete configuration.

The main reason for extending the Jailhouse image with the TXT Stub, rather than

integrating this code into the hypervisor code itself, will be given in Section 5.2 on

page 64. But apart from this, it also makes it possible to reduce the necessary

changes required in the main Jailhouse hypervisor code — reducing build depen-

dencies and the possibility to introduce bugs that would also show when executed

without TXT support.

The Jailhouse loader is extended in a way, so it can first load this MLE, just as it

would normally load Jailhouse, and then give control to an additionally added TXT

loader (only when a TXT enabled image was loaded). Subsequently, this will then

take all necessary steps dictated by TXT to load and configure the ACM (this

may optionally include the load of LCP data). The ACM in turn will later measure

the loaded MLE. The last step of the TXT loader is to start the measured launch

by executing the SMX instruction GETSEC.

At the end of the measured launch, the ACM will yield control and jump into the

MLE’s TXT stub. After the system’s environment was noticeably changed during
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Figure 5.1: Diagram showing the general overview over the process of starting Jailhouse
with support of Intel TXT. This can be compared to the diagram previously
shown in Figure 2.7 on page 20. The areas shaded in gray are the areas of this
work (except the measured launch), they have been either added or altered in
order to make the measured launch possible.

the launch, it is now the responsibility of the TXT stub to bootstrap it again and

bring it back into a suitable state for Jailhouse to execute. The final result after

this phase is either a TXT reset — the error path —, or an other jump, this time

into the nearly unmodified Jailhouse code.

Jailhouse will behave as it would without the measured launch, with the exception

of a few necessary changes. It will apply the measured configuration and start

executing the root cell, with the states of the operating system that was running

before the launch as part of the guests-states in the VMCS.

The overall outcome can be compared to the one accomplished with TBoot (see 4.1

on page 53). The dynamic PCRs of the system’s TPM will be reset during the

SMX operations, and they will be extended by the used ACM’s measurement in
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PCR 17. The ACM in turn will extend the measurement of the MLE into either

PCR 17 or PCR 18, depending on a configuration option set during the TXT loader

phase. Trust can then be established by using any Linux TPM software stack that

supports the Quote operation and any AIK that is bound to the system in question

and known to the trusting party (see 3.3.1 on page 36) — there is no need to re-

implement this step inside the MLE, the measurements are secured in the TPM.

Should Jailhouse ever shut down, it has to finalize its execution by running the

appropriate SMX instruction and by extending at least one additional value into

PCR 17. This has to be done to signal, upon a following remote attestation, that

Jailhouse is not running anymore (compare with 4.2 on page 55)1.

5.2 Defining the Parts of the Hypervisor’s MLE

As first part of the design, the Hypervisor’s MLE has to be defined. On the target

system, this will define what is measured by TXT’s SMX and ACM during the

measured launch. Anything not included here is not measured and hence can not

be used without comprehensive checks for its validity.

The following components are required to be included in Jailhouse’s MLE:

1. the MLE needs to include the Jailhouse image;

2. it needs to contain all configuration parameters for Jailhouse to execute, it

needs to include the Jailhouse configuration;

3. it needs to contain code suitable to execute after the ACM, especially after this

has set the common processor state before the jump (see 3.4.2 on page 47).

To trust a hypervisor, the system has to measure all components contributing to

the function of the VMM in control during the root-operations, before it gains this

control (this specific point of the measurement was discussed in 3.2 on page 28). The

process of how Jailhouse is started and configured was explained in detail in 2.3.1

on page 19. Both components, the image and the configuration, are integral part

of this process and will determine the function of the resulting system. Moreover,

they will also determine which parts of the system’s hardware will be controlled by

1This �nal step is not yet implemented in the implementation created during this work. Instead,
it does always reset the system completely in case Jailhouse is stopped, and thus also resets
the PCR values to prevent forging. Anything like this would require at least parts of a TPM
software stack.
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Jailhouse and with what security settings. They need to be measured and hence are

to be included into the MLE.

To still allow Jailhouse to execute without hardware support for Intel TXT (as it also

aims to support AMD and ARM), the image and configuration can not be changed

in a way that would make the normal start of Jailhouse impossible. Rather than

changing the old entry-path completely, there will be a new entry-path added for

the use with TXT (the TXT stub, see below; there will still be some minor changes

necessary to the old path).

Additionally, Jailhouse itself adds some more requirements that need to be fulfilled

by the MLE:

• Jailhouse on x86 is always executed in a 64 bit environment, the code of the

image is always compiled with IA-32e as target operating mode (also called

long mode or x86 64 );

• its address space starts at the fixed virtual address of 0xfffffffff0000000,

while the physical position is unknown at the compiler- and link-time;

• the configuration is located after the image, with a gap for Jailhouse’s per-CPU

areas.

The first two requirements can not be fulfilled immediately after the ACM jumps

into the MLE at step 5 in Figure 5.1 on page 63 (more details follow in 5.2.1 on the

next page). This makes it necessary to include code into the MLE that will prime

the system for the use with Jailhouse — the corresponding part in the previously

referenced image is the TXT stub. At the same time, this will solve the problem of

adding a second entry-path to Jailhouse: the TXT stub will be able to prepare the

environment in a suitable way, so it will be possible to run Jailhouse itself nearly

unchanged.

What Can Not be Part of the MLE Several other parts of Jailhouse and its

normal execution environment can not be part of the MLE though:

• The Linux kernel module that Jailhouse uses to load and start its image can

not be included into the MLE. It is part of the Linux kernel and uses several

functions of it in order to work. Those would all have to be included into

the measurement as well — and with that into the TCB. By including their

required functions as well, it would likely required to include the whole kernel

65



Chapter 5. Design of the Trusted Hypervisor Execution Benjamin Block

into the TCB and thus defeat the whole purpose of using TXT in the first

place.

• Any data passed from the module to Jailhouse which are not already known

at the time where the image and configuration are created. This primarily

means the processor state of Linux and the Linux page table that is used until

Jailhouse replaces it with its own.

In case any part of the MLE makes use these information, however they are passed,

it has to evaluated them thoroughly for any wrong or possibly malicious parts.

5.2.1 Structure of the TXT Stub

As seen, for most parts the MLE will be unchanged from what is currently part of

the Jailhouse execution environment set up by its kernel driver. The biggest change

is the addition of the TXT stub at its beginning.

One reason to separate this part from the rest of the MLE is to minimize the changes

necessary to the existing Jailhouse code base. By doing so, it is possible to construct

the remaining changes in Jailhouse in a way completely neutral to TXT (see 6.5 on

page 92). But next to this, there is also a hard technical argument, arising from the

requirements set by Jailhouse and the ACM.

Changed Processor State After the Measured Launch

During the description of the measured launch in 3.4.2 on page 47, it was stated

that before the ACM will yield control to the MLE, it will set a common processor

state (see Table 3.9 on page 48). This state can not be influenced from the outside

and thus: every code immediately run after this point has to confirm to this state.

In this environment, the MLE has unrestricted (read-only-) access to the full 32 bit

address space. Every used virtual address is translated into the same linear and the

same physical address (the code segment starts at 0 and allows for accesses till 4

GB, and there is no paging enabled).

This means that the normal hypervisor code can not be the target for this jump.

First of all, it is compiled using the Long Mode as target, and secondly, it expects

to be mapped to the virtual address space above 0xfffffffff0000000 (see 2.3.1

on page 19) — no matter were it is placed physically in the main memory. Both
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requirements can not be fulfilled by the initial MLE environment. It first has to be

primed for the hypervisor by another piece of code.

This is also a major difference between this solution and the ones previously done

(compare to Chapter 4 on page 53). TBoot and TrustVisor are both started by the

IPL, they are both compiled with 32 bit as target and they have a fixed address

space whose start they can specify via the Multiboot protocol. Flicker on the other

hand also has the address space problem, but also requires a 32 bit platform to

work. This makes it possible for all three previous solutions to be direct target of

the ACM.

Every MLE that is not designed and build with the TXT target mode as target for

itself has to add a separate component that makes a transition into the expected

mode possible! In the case of Jailhouse, these parts can also not be build in the same

process, with the same binary as target. The used linker (ld from the GCC) can

not link two objects with different used address lengths2 [GNU13] (will be shown

in 6.2 on page 78).

Specifying the Stubs Address Space

The change of the processor state has also another implication in the design: the

stub can not use the same address space as Jailhouse.

In contrary to TBoot and TrustVisor, Jailhouse can not be programmed with a fixed

physical start address that is already known at the compile time of the image. This

means, the address can also not be hard coded into the address layout applied by

the linker (or calculated by it). The physical starting point is only just stated in the

Jailhouse configuration and thus only known at the runtime of the compiled image.

Additionally, the same requirement as in the argument for the previous decision

applies: the fixed virtual addresses of Jailhouse starts above 4 GB.

Both requirements are in conflict with the changed processor state. After this state

is applied, there is no address translation activated, every reference will translate

from virtual into the same linear and the same physical address, which are also all

at most 32 bit wide. Together with the unknown physical position, this means that

the Stub can not share the static address space of Jailhouse.

During this work, two possible solutions for this have been found: reusing the MLE

page table, or applying a position independent address scheme to the stub.

2To the best of our knowledge, there is no such linker.
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Reusing the MLE Page Table One of the two ways found is to reuse the MLE page

table created for the measurement done by the ACM. During the setup, a pointer

to the beginning of this page table is stored on the TXT heap — a centralised data

structure that TXT uses to communicate data between the different parts of the

dynamic chain of trust (for more details see 6.1 on page 77); depending on the ACM

version, this information may also be placed in the ECX register (see Table 3.9 on

page 48). Because the exact location of this TXT heap can be found via a TXT

chipset registers, it is possible to retrieve this pointer again once the TXT stub is

in control over the system.

Once the MLE has retrieved this pointer from the heap, it can use it to re-enable

the paging of the system (it will still be running in 32 Bit protected mode, but

with paging enabled). It thus can use its own private address space with absolute

addresses — like every normal user application —, it only has to follow the general

restrictions imposed by the MLE page table (no gaps in the address space, 32 bit

addresses).

The downside of this is, although this page table is used to measure the MLE and

is used to resolve the entry point, the exact mappings between physical addresses

and virtual addresses are not measured. There is no certain way for the MLE, other

than reverifying the table, to tell what physical addresses are actually used — in case

absolute physical are use in the MLE (e.g.: MMIO), this is a potential security.

Applying a Position Independent Address Scheme The other possible found

way is to apply a technique known from dynamic linking of libraries into binaries at

runtime: PIC [Ben11] (Position Independent Code).

As can be seen in Table 3.9 on page 48, the ACM does not only jump into the MLE,

but it also puts the target address into the register EBX. This means, during the

execution of this first address in the MLE, it knows about its physical location and

it can use this information to calculate every other address relatively to this one.

To make those calculations easier, it is possible to design the MLE in a way that the

entry point is always on the first page of the mapped space (within the first 4 KB

of its address space) and that the start address of the MLE also falls onto the start

of this exact page. The stub can then align the given address of the entry point to

the nearest page boundary and thus has derived the beginning of its own physical

address space.
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As an example: lets assume the virtual address space of the MLE begins at the

address a = 0 and its entry point is at address e = 768. By instructing the linker

with the start address a, it will calculate every final address of the binary as offset

from 0. This address a is also stated as the (linear) start address in the MLE

header. The system is therefore also required to use a page boundary as physical

start address.

Now, lets assume further that the physical start address, that corresponds to a,

is decided to be p = 00003000h. This means that the physical entry address,

that corresponds to e, must be i = 00003000h + e = 00003300h. This is the

value stored in the registers EIP and EBX. Upon getting the control, the MLE can

now calculate the beginning of its address space by doing a simple and-operation:

base = i & FFFFF000h. And because all virtual addresses, created during the linking-

step of the stub, were created as offset from a = 0, their physical addresses can be

calculated during the runtime by simply adding them to the calculated base.

When applied in this manner, this kind of PIC can even be supported by compilers

like the GCC [Ben11], making it possible to compile unchanged C code for it, with

only a very short initialization necessary (see later in 6.4 on page 86).

The Resulting MLE for Jailhouse

For the example used in this work, the hypervisor Jailhouse, no significant ad-

vantages or disadvantages for either approach could be found. Both will require

initialisation and verification in assembly (for the former the argument was made in

the same paragraph, for the later it will be made in 6.4 on page 86), but once this is

done, both support the implementation of the main code base in unaltered C with

native support by the GCC C compiler.

The final decision in the design for this work was made in favour for the PIC ap-

proach. Because Jailhouse makes it necessary to create yet an other page table, for

the change from protected mode to the IA-32e mode, it also requires the implemen-

tation of a paging scheme in the stub — different from the PAE paging used for the

MLE page table. To additionally support the use of the MLE page table, it would

be necessary to either make this algorithm more complex, to allow for a conversion

from PAE to IA-32e page table, or alternatively, to implement two independent page

algorithms — both enlarging the TCB.
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Figure 5.2: Overview over the resulting MLE layout for the Jailhouse hypervisor. The VAS
is the Virtual Address Space as used during the execution of the corresponding
Jailhouse part. The Gap is �lled with zeros during the time of measurement,
but is required by Jailhouse’s Memory layout.

With this and the decision to split the hypervisor into two separate parts, the MLE

will finally result in the layout displayed in Figure 5.2.

This layout, including everything up to the end of the configuration, will be part of

the measurements taken during the measured launch by the ACM. It represents the

core of Jailhouse’s TCB. The only other components are the ACM and the hardware

itself.

5.3 Responsibilities of the TXT Loader

In the overview shown in Figure 5.1 on page 63, the first new component added

to the Jailhouse hypervisor is the TXT loader. The task of this component is to
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setup all the required configurations to satisfy the requirements set by the TXT

specification, in order to subsequently start the measured launch.

Later, during the description of the implementation (see 6.3 on page 80), it will be

shown in detail what steps exactly are necessary for this to work. This will also

show that most of these steps are done to setup the ACM and only a few for the

SMX call that starts the measured launch. But because the specification of TXT is

very explicit about these details, it is not required for the design to further narrow

them down.

The main design decision about it was implicitly made by not including it into

Jailhouse’s MLE. It will be an extension to the already existing Jailhouse loader.

Because the loader also needs to be able to support hardware and images with and

without support for Intel TXT, like the Jailhouse image in the MLE, it is necessary

to separate the TXT part logically from the normal parts of the loader. But unlike

the TXT stub, it will be possible to implement and build them within the same

context, making the interaction between the two easier.

In combination with the Jailhouse loader, it will be responsible to:

• load the necessary data from the long time storage into their correct position

according to the designed MLE layout;

• load optionally possible LCP data (those will be placed after the MLE, but are

not part of it) — the part of the LCPs stored in the TPM will decide whether

this is necessary or not;

• create the MLE page table and place it at the correct position according to

the specification;

• configure the DMA protection for all the elements named before, so that they

may not be changed during the measured launch (after they have been mea-

sured), TXT specifies the methods to be used;

• load the ACM from the long time storage into its specified position and con-

figure all the necessary options for it;

• save the state of all processors in an appropriate place (as they are reset by

SMX and the ACM);

• instruct the measured launch.
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Details about this process will later be given in the implementation, at 6.3 on

page 80.

5.4 Responsibilities of the TXT Stub

The second and last truly new component to Jailhouse is the TXT Stub. How it

is integrated into the MLE and why was shown in 5.2.1 on page 66. The reason

— to prime the environment according to the requirements set by Jailhouse — also

implies the responsibilities it has in the design for the TXT support.

In contrary to the TXT loader, the stub is not specified in nearly as great of a detail

by the TXT specification. Most of its responsibilities are dictated by the state of the

processors after it received control from the ACM and Jailhouse’s requirements:

• it needs to bootstrap the environment again, to be able to receive and process

exception, to have a writeable data and stack segment again, and to be able

to execute compiled C code;

• it has to create the page table for Jailhouse and to map all necessary memory

locations according to the memory layout;

• all the other processors that were disabled during the SMX operations of the

measured launch have to be re-activated (using another specific SMX instruc-

tion);

• the same has to be done to the external events that were disabled during the

SMX operations (e.g.: SMIs, NMIs, IRQs);

• it has to prime some of Jailhouse’s structures (see below);

• finish its execution by changing the operating mode to IA-32e and by jumping

into the main Jailhouse code.

To not endanger the integrity of the MLE, all those steps have to be done without

the use of external and unmeasured data. This especially holds true for the proces-

sor states that were saved by the TXT loader — it is not part of the MLE and hence

can not be trusted. Most information though can be retrieved from the also mea-

sured Jailhouse configuration (it describes the target system exhaustive; see 2.3.1 on

page 19). All the dynamic runtime states, those that will be necessary to continue

the execution of original Linux, can be securely handled during the execution of
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the Jailhouse core by putting them into the VMCS’s guest-state area — this will

virtualize them, but not apply them directly.

Nonetheless, it will later be shown in the implementation that this requirement can

not be complied to at all the time. Processor states that are changed, but can not be

put into the VMM’s VMCS, have to be restored otherwise to guarantee the guest’s

function (the example later shown concerns the processors MTRRs).

In the last step before jumping to Jailhouse, the stub will pre-initialize Jailhouse’s

per-CPU areas and its paging structures. Jailhouse would normally save all the

processor’s states itself and it would calculate its own paging structures as well —

while still using Linux’s page table. But the former is not possible in the MLE,

as it would require the re-set of the stored and untrusted states, and the later is

redundant, because a new page table is already created at this point in the stub.

5.5 Changes in Jailhouse

Design and overall function of the main Jailhouse code have not been changed in this

design, as it was required. Concerning the trusted execution, this especially means, it

has to protect itself suitable from any external influences. The only notable changes

had to be done to the initialization after the TXT stub and to the shutdown.

The start procedure had to be extended by a second path. On this new path, it

has to take into account that the TXT stub has already saved all the processor’s

states, into the appropriate places in Jailhouse’s memory, and that it doesn’t need

to create a new paging structure.

At the time of an eventual shutdown, Jailhouse has to recognize that is was started

by TXT. In case it recognizes this, it has to extend an other measurement into the

TPM’s PCR 17 and possibly also 18 (those two contain the measurements of the

ACM and the MLE, see 3.4.2 on page 42), in order to prevent following software

from imposing as the trusted hypervisor. And as second and last action during the

shutdown, it has to instruct SMX to exit.

Changes to enable the TPM’s remote attestation process are not necessary in Jail-

house itself (see 3.3.1 on page 36). Because the used AIK and PCRs are protected

by the TPM, it is possible to use any existing software stack on Linux to solve this

problem (this also spares Jailhouse the need to implement its own communication

means for this).
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6 The TXT Implementation for

Jailhouse

After presenting the TXT support for Jailhouse in Chapter 5 on page 61, it is now

necessary to show what steps are required to implement this design and in what

amount of source code and runtime growth this results.

As one of the main motivations for Jailhouse is to have a small and verifiable code

base that provides all the safety relevant features for the guests on its own, especially

the growth of the source code is important for it. Although TXT contributes to its

proper function by adding provable certainty that the correct hypervisor is used on

a target system, it should not be necessary to enlarge the code base for this by an

unreasonably amount of new sources.

To quantify exactly this and to show that the presented design is feasible, it was

implemented during this work. This chapter will present the main steps that were

necessary for this. Furthermore, it will name all restrictions that the current state

of the implementation has and how they are planed to be fixed in the future.

The first Section 6.1 on the following page of this chapter will present the basic

programming structures of Intel TXT. Following that, Section 6.2 on page 78 will

give a description of how the new hypervisor image is build according to the de-

sign. Sections 6.3 on page 80, 6.4 on page 86 and 6.5 on page 92 will then given a

detailed description of the main steps necessary to implement the new components

introduced to the Jailhouse hypervisor, and Section 6.6 on page 93 will afterwards

discuss the remaining issues of the implementation of those steps. Finishing this

chapter, Section 6.7 on page 95 and 6.8 on page 97 will present the relevant size and

performance metrics of the current implementation.
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6.1 Programming of the TXT Components of the

System

Next to the added SMX instruction set, TXT adds two more central structures

which are necessary to implement the support for it: the TXT configuration space

and the TXT heap. Both are created by the system, the config space by the chipset

and the heap by the firmware at boot time.

The TXT Configuration Space

The config space is a set of registers located on the chipset. They are programmed

via a memory mapping which simultaneously exists at the addresses 0xFED20000

and 0xFED30000. Each of these mappings is one 4 KB page long and contains only

register with a width of 64 bit.

They both represent a different view on the same space (they both have the same set

of registers at the same offset). The mapping that starts at the address 0xFED30000

is the always accessible public view. It mostly provides read-only access to the

mapped registers (with a few non-security relevant exceptions). The mapping at

the address 0xFED20000 on the other hand is treated as the private view. It is only

accessible in between the successful execution of the instructions GETSEC[SENTER]

and GETSEC[SEXIT] (during the dynamic chain). Outside of these, every read will

return zeros and writes will be ignored. The access to the registers is handled with

the normal set of MMIO operations (depending on the paging settings, this space

has to be mapped into the virtual address space and set to uncachable)

The complete set of available registers can be found in the TXT specification, Ta-

ble 6.1 on the facing page lists to most important for this work.

As shown, these registers also contain the location of the TXT heap, and they

specify the memory where the setup has to put the ACM before it can start the

measured launch. Both areas are created and locked by the system’s firmware (e.g.

the BIOS).

Additionally to this, the space which holds those two areas is also called DMA

Protected Range (abbr. DPR) and it is protected by the chipset from every DMA

access on the system. This protection is applied after the IOMMU applies its own

mappings and is also activated if the IOMMU is not, even outside of any SMX

operation [Int14c].
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Register Name Description

Status Shows information about the state of TXT in the system
(was SENTER performed, what locality is opened by the
chipset, is the private space open, etc.)

Error code The only information that is saved during a TXT reset (a
system reset caused by an error during the measured launch).

Reset A write to this will induce a TXT reset from within the MLE.

SINIT Base and
Size

Space reserved by the system’s firmware to put the ACM at
runtime.

HEAP Base and
Size

Space reserved by the system’s firmware for the TXT heap.

Open and close
locality 1 and 2

Can be used after the measured launch to open and close the
use of locality 1 and 2 via the chipset (3 and 4 remain off
limit).

Public Key Stores the public key used to verify the ACM during the
measured launch.

Figure 6.1: Table showing a selection of registers mapped in the TXT con�guration space.

The TXT Heap

The TXT heap is the memory space used to communicate between the different

components of the measured launch — it is not memory mapped, but normal space

of the system’s RAM. Like said, it is created by the firmware and discovered through

the TXT config space.

The exact structure of the heap is defined in the TXT specification and is divided

into 4 main blocks:

1. BIOS Data: contains data originating in the system’s BIOS. The main pur-

pose of this block is to communicate the location of the ACM, in case it is

provided by the BIOS and not Intel. The same may be true for any LCP

data provided along with this BIOS ACM. Both could not be seen on the test

hardware during this work.

2. OS to SINIT: this contains the configuration of the ACM that is done by

the setup software. It will point to the root of the MLE page table, the MLE

header and the MLE size. Furthermore, it will contain the location of any
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LCP data, in the case the system uses this feature (see 3.4.3 on page 48), and

it will contain other minor configuration details.

3. OS to MLE: this is the location for any data that the setup software wants to

provide to the MLE. It is not defined any further and in the case of Jailhouse,

it will be used to save the processor state of Linux before the measured launch.

4. SINIT to MLE: this block will contain data computed by the ACM during

the measured launch and it can be used by the MLE to learn trusted informa-

tion about the system (hash values of different components, memory mappings

and more). The Jailhouse MLE doesn’t rely on these information, but it rather

uses the comprehensive and also measured Jailhouse configuration.

It is not exactly specified how large the reserved space for the whole heap is. On

the test hardware in this work it was 768 KB big. This means, the setup has to

be careful about what data it puts into the “OS to MLE” space, in order to leave

enough space for the ACM to store its own data in the last block of the heap.

6.2 Build of the Hypervisor Image

The main parts of Jailhouse’s MLE are the Jailhouse image and the TXT stub —

next to the configuration, which is not changed. Why those two parts are separated

from each other has been shown in the design, at 5.2 on page 64. In 5.2.1 on page 69

it was further shown how the address layout of the two is defined. But because those

two parts and their layout don’t confirm to the defaults used by the toolchain, it

was necessary in the implementation to figure out a way to make this build possible

nonetheless.

As the main toolchain for compilation and linking, Jailhouse utilizes the GNU Com-

piler Collection and the GNU Binutils. The GCC is able to compile C code with the

desired target architectures by setting a fitting CPU type as argument to its com-

mand line option -march=<target> (by setting this to i386 for the TXT stub, the

GCC is prevented from using any unsupported or not yet activated instructions).

Additionally, the length of the used addresses and types can be chosen by either

using -m32 for 32 bit and -m64 for 64 bit code.

But because the two parts are build with different target architectures, it is not

possible to link the resulting object files together into one final binary. The code

of the TXT stub uses 32 bit addresses and Jailhouse uses 64 bit addresses, those
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1 SECTIONS
{

3 . = 0 ;
m l e s t a r t = . ;

5 . header : { ∗ ( . header ) }

7 . = ALIGN(16) ;
. t ex t : { ∗ ( . t ex t . t ex t .∗ get pc thunk . bx ) }

9

. . . .
11

. = ALIGN(16) ;
13 . s tack : { ∗ ( . s tack ) }

t x t s t u b e n d = . ;
15 }

Listing 6.1: Code listing showing a snippet from the TXT stub’s linker script.

can not be mixed by the linker. This is solved by compiling and linking both parts

separately into their own binary. Those are then stripped from their ELF headers

with GNU objcopy (the headers are not necessary for Jailhouse) and the outcome

is glued together into one final image (in the presented address layout, this is the

part from the beginning TXT header, up until the end of the Jailhouse code).

The information where the TXT stub ends and the Jailhouse image starts is stored

in the TXT header. This is for example used in the Jailhouse kernel module during

the setup of the measured launch. The code of the TXT stub on the other hand

doesn’t need this information explicitly, it can make use of the virtual address layout

instead. During the final linking step, the linker will know how long the stub will

be — to calculate the final addresses of all defined symbols — and the code of the

stub can use this information by defining a symbol that is right at the end of it.

This can be done with linker scripts supported by the GNU linker ld [GNU13].

Those scripts are also used to define how exactly the virtual address space of the

stub shall look like — to make sure it confirms exactly to the one described in the

MLE layout, and to define extra areas needed during the runtime of the stub. The

relevant part from the TXT stub’s layout is shown in Listing 6.1.

In this listing, it can be seen that the beginning of the layout is specified at address

zero — to make the PIC addressing easier (see 5.2.1 on page 68) — and that it ends

with the definition of the symbol __txt_stub_end. In between, it collects all the

code generated by the compiler in the different sections, like for example the text

section for source code or the (not shown) data section for pre-initialized variables.

Symbols like __txt_stub_end can then be used in the source code as addresses and
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will be filled during the final linking step.

Putting all this together with GNU make, it will build both parts and merge them

into the final hypervisor image.

6.3 Implementation of the TXT Loader

The responsibilities of the TXT loader have been shown in the design at 5.3 on

page 70. This section will show the main steps that are necessary to fulfill those.

The loader is invoked by the already existing Jailhouse kernel module. This follows

the same operations as it would without TXT: it loads the hypervisor image (now

with the TXT stub pre-attached), interleaves the area for the per-CPU structures

and loads the Jailhouse configuration in the following space. The physical space

used for this is defined in the Jailhouse configuration and reserved for this purpose

via a kernel command line parameter — the virtual space is reserved as shown in the

address layout of the MLE (see 5.2.1 on page 69). Following this load, the module

detects the presence of the TXT header — instead of the usual Jailhouse header —

and invokes the TXT loader.

During the runtime of the loader itself, the main task is to configure the ACM, not

the SMX instruction — GETSEC[SENTER] in case of the loader. This instruction

only takes 4 parameters: the selection of the operation SENTER in the EAX register,

the physical position and size of the ACM in the EBX and ECX registers, and op-

tionally a selection of to be disabled SMX functions in the EDX register (from the

functions available in the current SMX implementation, none can be disabled with-

out breaking the measured launch, leading this to be be always zero). Apart from

these parameters, the only other two conditions are that the instruction is run in

the highest privilege level, outside of any VMX operations, and that the ACM was

loaded into the DMA Protected Range discovered via the TXT configuration space

(see 3.4.2 on page 42 for more details about how SMX handles to ACM).

But all this does not yet specify anything about the MLE. The handling and mea-

surement of the MLE is the task of the ACM in Intel’s dynamic chain of trust1. This

section will now discuss the necessary steps to configure the ACM in a specification

conform manner to measure Jailhouse’s MLE.

1As opposed to AMD, where the concept of an ACM doesn’t exist at all [AMD13].
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Placement of the Loaded Hypervisor Image The exact location of the hypervisor

image, at the time it is loaded in the Jailhouse kernel module, is influenced by two

constraints required for TXT: the physical position has to be in the lower 4 GB of

the memory, and it has to be placed after the MLE page table — the former has to

be considered at the time the Jailhouse configuration is created.

Calculating the space required for the MLE page table can be done without creating

the table itself: the size of the MLE is known at the time the image and configuration

is loaded, and the virtual start address of the MLE is a constant specified in the

address layout (zero).

The result of this step is a fixed amount of blank space at the beginning of the

predefined Jailhouse memory — enough to locate the MLE page table — followed

by the MLE.

TXT Pre-Checks Before the loader can start the setup itself, it has to check

whether the processor and system support the measured launch in the first place.

It does this by first checking whether the processor supports SMX (via the instruc-

tion cpuid), and in case it does, the loader activate SMX by setting the corre-

sponding bit in the CR0 register. It can then check for the necessary TXT functions

via the SMX subcommands CAPABILITIES and PARAMETERS. This process is not

much different from the discovery of other optional features in x86 (like the VMX

extensions).

Some information learned this way have to be saved for future configuration steps:

the minimal version of ACM and the type of memory caching supported during the

measured launch (more details in 6.3 on page 85).

Load of Any Available LCP Data Whether or not the loader needs to load any

LCP data can be found out by examining the LCP part that is stored in the TPM’s

NV RAM — this part is always required (see 3.4.3 on page 48).

In case the data part is required, then it also has to be protected from DMA, along

with the MLE page table and the MLE (see next paragraph), but without any

special placement required. The loader will place it after the MLE. And because

it is only required by the ACM, it can be overwritten after the measured launch

without further checks.
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Because there was no time to implement the necessary TPM interaction to read from

the NV RAM, this step is done unconditionally in the current implementation.

Configuring the DMA Protection for the MLE It was already discussed how the

ACM and the TXT Heap are protected from DMA during the measured launch (the

later with the help of the system’s DPR, and the ACM by loading it into the BSP’s

ACM area). The MLE though, along with the MLE page table and the optional

LCP data, also need to be protected from DMA. Otherwise they might be changed

by the hardware after they were measured by the ACM.

For this purpose it is specified with TXT, that they have to be placed into a Protected

Memory Range. These PMRs are a feature of Intel’s VT-d [Int13] (PMR also stands

for Protected Memory Register in this context).

PMRs are not part of the normal remapping structures of the IOMMU and they

can be used without them. They can however be overwritten by the remapping

structures (unlike the DPRs). Programming them is straight forward: they are

discovered via the capability register of the IOMMU, they are split into two sets,

each set with two registers, and they have one global control register. The control

register is used to switch the protection on and off and the two register sets are used

to define the protected ranges (one register as base and one as limit). Both ranges

can protect a region in the lower 4 GB of memory, but only one can protect space

above that limit.

But while this is straight forward, it is also troublesome in case the system in

question already makes use of them and/or the IOMMU in general.

For the TXT support in Jailhouse, both restrictions can be ignored at the moment.

Linux doesn’t make use of the PMRs at the time of this writing and Jailhouse

forbids the use of the IOMMU remapping structures before it is launched (this is

enforced by another kernel command line option prior the boot). Should one of

these preconditions change, it would make it necessary to re-program the PMRs

before the launch of TXT — migrating the protection applied by the previous PMR

settings and the remapping structures.

For the loader this means, it can monopolize the PMRs to protect the MLE and

the other components. During the measured launch, the ACM is specified to check

upon those settings before it takes any measurements [Int14c].
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Priming the TXT Heap As explained in the description of the heap, the loader

and the following TXT stub don’t make much use of the heap.

Concerning the size of the heap, the loader needs to check whether it is big enough

to contain all the processor states that are saved later during the setup, or not.

Other than this, the heap is only used to convey information about the MLE to the

ACM (in the “OS to SINIT” section). It has to supply the size and position of the

MLE, the MLE page table and the LCP data, in case any is used. And it also has

to duplicate the applied PMR settings here. All of these settings will be checked by

the ACM to evaluate the MLE.

Finding a fitting ACM Each ACM supports only a limited amount of hardware

platforms (as far as it could be found out, Intel releases a new ACM for each new

platform). The loader can discover if a specific ACM fits the target platform by

examining its header.

The following are amongst the possible factors it has to check for (see the TXT

specification for a full list [Int14c]):

• does the ACM support the platform’s chipset and CPU;

• do the chipset and CPU have the same production state as the ACM (debug

or release version);

• does the ACM have compatible features with the MLE?

The first two items can be determined with tables in the ACM header and the use

of the TXT configuration space in combination with different discovery features of

the CPU (CPUID and certain MSRs). In those tables the ACM states which chipsets

and CPUs it supports.

The last item depends on a capability bit field in the head of both the ACM and the

MLE. It can be used to signal the support for a set of features of TXT, but in the

current version of TXT, most of these have to be enabled by default (an exception

would be, for example, the TPM version, which can be 1.2 or 2).

After a suitable ACM is found, it has to be loaded into the memory described for it

by the TXT config space.
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Creating the MLE Page Table The MLE page table has to be created in the space

reserved for it in front of the loaded MLE. A detailed description of the page table

can be found in 3.4.2 on page 46, the process of creating it follows the specification

of the PAE table layout.

Catching All Available Processors All the previous steps could be run without

synchronisation between the processors. The loader will only execute them on the

processor which started the Jailhouse enable. But after those are done, the loader

goes into the final phase before doing the measures launch itself.

This requires amongst others the change and save of processor states, and although

SMX will catch all processors anyway, this has to be synchronised to not loose any

information when SMX starts and overwrites the states. Otherwise, it might later

not be possible to resume Linux in the exact state as it was before the measured

launch, and with that break its function.

Both the catching and the synchronisation can be done with functions provided by

the Linux kernel (this will also disable interrupts and preemption). Important for

TXT is to distinguishes between the BSP and the RLPs. Like explained in 3.4.2 on

page 42, the actual launch can only be done by the BSP (recognized through the

MSR IA32_APIC_BASE).

After this step is done, no other user or kernel process runs on the system, all

processors are in the loader’s code.

The first action at this point is to redo parts of the TXT pre-checks. Previously,

the loader only enabled SMX in the CR0 register of the initial processor. This value

though is not synchronised across all processors, and thus has to be re-applied on

all other processors as well.

Making Sure the TPM is Unused It might be possible that the TPM was in use

before the loader caught all processors, and because it is only usable by one driver

at the same time, the loader has to terminate the previous session in a clean way —

making sure it is not activated at the time of the launch.

The loader does this by writing to the TPM access register of locality 0 and request-

ing it to become inactive. This single step can take up to 750ms [TCG05], but it

has only to be done on one of the processors. After this time, the TPM is required

to be in an inactive state.
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Mapping the ACM in the Systems MTRRs While SMX sets up the system for

the measurement of the ACM and during the subsequent run of the same, it will

disable the paging of the processor. In this mode the processor has no access to

the page level control of its cache (e.g., page table and PAT). Instead, it will use

the Memory Type Range Registers (abbr. MTRR, [Int14b]) of the Intel architecture

(unless caching is completely disabled with the CD flag in the control register CR0).

When activated, they apply a default caching type to every memory region not

explicitly mapped, and otherwise they offer a range of registers (MSRs) to state the

caching type for other specific memory ranges.

For the ACM, the loader has to apply a specific scheme: the space that is used by

the ACM has to be mapped with the caching type Writeback, every other range of

the memory (the default value, also including the MLE) has to be mapped with

one of the types the loader found during the TXT pre-checks — the fall back is

to map them with Uncacheable. This mapping has to be synchronised across all

processors (MSRs are not synchronised by the hardware). It guarantees that the

ACM can still profit from the processor’s cache, but doesn’t suffer from any unfit

cache setting applied to the other areas of the memory — it will be predictable.

The old settings of the MTRRs, as they have been programmed by Linux, will be

saved on the TXT heap (in the “OS to MLE” area), so they can be re-applied later

in the MLE.

Saving the CPU State and Making the Launch After all those steps are done,

the module has satisfied every precondition necessary to start the measured launch.

Up to this point, an error or missed requirement will only result in a rollback and

the release of all resources acquired during this process. The operating system will

return an error code and otherwise can resume the operations unchanged.

Now though, the loader will enter the final phase of the setup. It will again gather

all processors. All but the BSP will go on and save their current architectural state

on the TXT heap, in the “OS to MLE” area.

To be later able to distinguish between the different states — in contrast to the

MTRR state, which is global —, this is done in the form of an associative array.

The associated index for this array is the processor’s initial APIC ID. This ID is

fixed to the processor and can not be changed across the measured launch (for

processors where the ID can be changed during the runtime, CPUID[0x01] will

always return the initial APIC ID [Kuo12]). Additionally, to save heap space, this
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array is designed to only have as many fields as processors in the system. Later

in Section 6.6.2 on page 95, it will be shown what restrictions apply to this in the

current implementation.

Subsequently to this save, the processors will signal to the BSP that they have

finished saving their state and then they will stop executing by instructing HLT

(interrupts are still disabled here).

The BSP meanwhile will wait as long as it has not yet received the word from all

processors but himself. It will then save his own state in the same associative array

as the RLPs and finally execute GETSEC[SENTER].

This ends the setup phase and starts the dynamic chain of trust by establishing the

root of trust for measurement, and it follows the steps described in detail in 3.4.2

on page 42. During this phase, every error will lead to a TXT reset — an error code

(32 bit wide) will be stored in the error register of the TXT configuration space.

The exact reason for such a reset can then only be found out after the system has

booted again.

6.4 Implementation of the TXT Stub

After the measured launch, the ACM will eventually jump into the measured MLE.

The exact entry point is given in the TXT header at the beginning of it (also as

linear address that will be resolved via the MLE page table). In case of Jailhouse,

this entry point will be part of the TXT stub and the responsibilities of that stub

have been given in 6.3 on page 80.

The state of the (only) active processor at this point is determined by SMX and the

common processor state set by the ACM (for the later see 3.9 on page 48):

• maskable interrupts are conventionally disabled;

• SMIs and external NMIs are also still masked;

• all other processors are sleeping and can only be reactivated via a way provided

by TXT (a description will follow);

• the MLE, ACM and TXT heap are protected from DMA by the configured

PMRs and DPRs;
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• the TPM’s locality 2 is open (locality 1 can be opened via the TXT config

space).

The stub is now responsible to manage and restored these states — it will follow the

order given in the design for this task. Other changes will remain off limit though;

for example, the A20M pin will remain being masked unless the dynamic chain is

ended by executing GETSEC[SEXIT] and the TPM localities 4 and 3 will remain

closed (closed by the processor and ACM).

Verifying the Environment The first step in the stub is specific for the PIC method

that is used to design the virtual address space of the MLE (see 5.2.1 on page 68).

Because the MLE can not trust the setup to have mapped the expected physical

positions — the ACM places no restrictions on the physical addresses, only on the

linear ones —, it is required in both presented methods to verify the mappings in

the MLE page table. For the PIC method, this needs to be checked right at the

start of the MLE. If the MLE page table is reused, it needs to be checked when new

addresses are mapped into the table (for example, to prevent double mappings).

In the designed memory layout for the Jailhouse MLE (5.2 on page 70), it is spec-

ified that the MLE is placed continuously in the physical space (because the same

requirement is already made by Jailhouse without TXT). Because it concerns the

physical addresses, this needs to be checked after the entry.

Because the linear start address is included in the measurement (in the TXT header),

it is guaranteed that the first page of a correctly measured MLE is placed correctly.

In this case, it is impossible, for example, to place the linear start address “0” on

a physical address that is not a page boundary. But the next physical page is not

guaranteed to be placed in direct succession — an ill-intended setup might leave a

gap in the physical space.

The stub has to make a check for this manually and only with code that is located

on this first page — otherwise it might already be manipulated. It can do so by

using the rules set for the MLE page table (checked by the ACM) and the design of

the MLE address layout.

Both the TXT header and the text-segment of the stub are place on the first page

and thus are valid in case of a correct measurement. The stub thus knowns its linear

start address, its length (both can be retrieved from the header) and it knows its

current physical location from the EBX register. Furthermore, it knows that the MLE

page table is required to not contain any gaps in the linear mappings and is required
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to have strictly ascending physical addresses. By locating the physical address of the

first page — using the start address — it can calculate at what physical address the

last page should be. If it sees that the last mapping does not result in the expected

physical address, it knows that the page table is wrong — the only possible reason

is a gap in the physical space.

Both steps only require an one-way look up through the page table — which in turn

is only a succession of redirected memory lookups. If it finds that the last mapping

is at the correct physical location, length addresses away from the first one, it knows

that the MLE was placed correctly.

Initialize the TXT Stub Environment After the first verification is done, the BSP

has to setup the general execution environment. This process is largely similar to

the boot process of a normal operation system, with only a few exceptions due to

TXT.

First of all, the stub has to replace the global descriptor table (abbr. GDT ) with its

own and then load the respective selectors for the code and data segments (no write

access up to this point). The segments used by the stub will continue to use the

basic flat model that was already used at the entry-point — every segment will have

the same limits and map the linear address space from 0 up to 4 GB uniformly.

After the data segments are set, the BSP can also enable its stack. As seen in the

memory layout of the MLE, it reserves a separated area for this purpose within the

bounds of the TXT stub. The other processors that are still sleeping will not use

this same area, but will later be initialized to already use their own stack space

reserved in the Jailhouse per-CPU area. Because the BSP first has to figure out

where exactly this per-CPU area resides within the MLE, it can not do this just

yet.

With the stack enabled, it is possible for the BSP to enable its own interrupt de-

scriptor table (abbr. IDT ), to catch and process exception properly. At this point in

the MLE’s execution, the same strategy as in the ACM is applied in case of an error:

the stub will issue an TXT reset and give a custom error code via the TXT config

space. Any other handling, like for example return to Linux, would first required a

operating mode change; this option is more viable later, when the MLE has already

entered the execution of Jailhouse itself.

Although at this point, the stub could also enable the handling of IRQs again, the

stub will not reactivate them, and neither will it reactivate the external NMIs (those
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were disabled during GETSEC). Both will later be reactivated by Jailhouse when it

enters the execution of its VMX guests (VMX allows for the VMM to specify whether

an external interrupt will cause an VM exit and it will enable interrupts and NMIs

depending on this selection [Int14b, Int14a]). The default Jailhouse behaviour is to

let the guests process external IRQs without a VM exit and cause a VM exit in case

of a NMI.

The last step, before it is possible for the stub to use code compiled from C, is

to initialize the global offset table (abbr. GOT ) [Ben11]. This table is created by

the C compiler when it is instructed to compile position independent code (this is

part of the ABI [SCO97]). While most of the code will be compiled in the same

way as it would without PIC (this is possible because on i386 the compiler will use

EIP-relative calls for functions and store local variables or arguments on the stack

without any direct addressing [Int14a, SCO97]), code that accesses global variables

has to be changed in this mode.

These variables depend on their absolute address, but because of PIC the linker

doesn’t know where in the address space the code will be placed during runtime. This

means, it also can’t know the absolute addresses at link-time. Instead, the compiler

will generate code that accesses these variables indirectly through a lookup in the

GOT. In there, the linker stores the distance of these variables from the beginning

of the code — in the same way as the addresses in the used position independent

address space are calculated. Before the stub can use this table then, it has to

add its start address to each of the fields in the GOT (this address is calculated as

explained in 5.2.1 on page 68).

After this is done, the stub can make use of otherwise unaltered code, compiled with

a normal C compiler following the System V i386 ABI [SCO97].

Create Jailhouse’s Page Table The stub will now setup the page table necessary

to switch from the current protected mode to the target IA-32e operating mode. To

prevent redundant work (Jailhouse would normally also create its own page table),

the stub will create the paging structures in the exact same way as Jailhouse would

do it and store them them in the same locations, too. All the information necessary

for this process can be found in either the normal Jailhouse header or in the Jailhouse

configuration.

At this point, the BSP also has all information necessary to locate its own per-CPU

area in Jailhouse’s memory space, and it can switch its stack from the private area
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to the one Jailhouse will later use for it as well.

Wakeup of the RLPs and Re-Activation of the SMIs The BSP has now done all

necessary steps to switch the operating mode. But at this point, all the RLPs are

still disabled. After the measured launch, they can not be woken with the scheme

normally used to initialize a multi processor system on Intel’s x86 architecture (the

INIT-SIPI-SIPI sequence [Int14b]). Instead, it has to be done with another subcom-

mand from the new GETSEC instruction (the subcommand WAKEUP).

Before the BSP can use this command, it has to setup a data structure containing:

the desired EIP, desired GDT and the associated segment selectors (this is called the

JOIN -structure). All of these are used to initialize the RLPs during their wakeup.

This makes the startup more flexible than the initial jump from ACM to the BSP.

The RLPs will already have a valid memory layout and usable data segments, oth-

erwise their architectural state is the same as that of the BSP at its wakeup (which

means, they also start in the 32 bit unpaged protected mode). The address of this

struct has to be written to the TXT config space and afterwards the BSP can call

GETSEC[WAKEUP] to proceed.

During this wakeup, the BSP will wait till it receives a signal from at least as many

RLPs as configured for Jailhouse — similar to before the call of GETSEC[SINIT]. In

case more processors than this wake up, they will cause a TXT reset, because this

state wouldn’t match the measured configuration. In the meantime, the RLPs will

start and configure the remaining parts of their environment that are not already set

by the join structure. This covers their own stack — in the correct position within

the per-CPU area of Jailhouse — and a working IDT.

For the identification of their respective spot in the per-CPU area of Jailhouse, the

same restriction applies as when they saved their state on the TXT heap (see in 6.6.2

on page 95).

The first step all processors will do together is to re-enable SMIs. This is also the last

step in the stub where SMX support is necessary (there is no other way to do this,

because there is no normal way to disable SMIs) — the corresponding subcommand

in this case is SMCTRL. A discussion of the security implications of this step can later

be found in 7.5.2 on page 114.
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Restore of the Saved MTRR Settings In the process of preparing the measured

launch, the system’s MTRRs were changed to fit the requirements set by TXT. So

the Linux that will later run as guest of Jailhouse can work correctly, these MTRRs

have to be changed back to their original value. But MTRRs can not be virtualized

with VT-x, there is no place for them in the VMCS and thus they have to be restored

without it (to not infringe upon the fidelity characteristic of the VMM). But this

also means that the MLE has to use unmeasured and therefore untrusted states.

To guarantee that the MLE can perform undisturbed by any intentional or also

unintentional failures in the saved state, it is necessary for the stub to check that

every used memory area in the MLE is mapped with a supported caching type.

In case of Jailhouse, the stub has to check at least that the configured hypervisor

memory and all used MMIO spaces are mapped with a fitting type (for example,

the TXT config space has to be mapped with the Uncachable type).

But unfortunately, there was not enough time to analyse this fully during this work.

To not disturb the guests of Jailhouse with potentially hard to debug behaviour, it

was therefore decided to re-apply the saved states without further checks. To ensure

the correct settings here, further work in this area is necessary.

One important guarantee that the Intel manual gives however, in case of an overlap

between MTRRs and page-level control, is that whatever control restricts caching

more becomes the effective one [Int14b]. So for example, in case the saved MTRRs

map a range of memory with more caching than the Jailhouse page table would

provide, then the settings of the page table would be used. In the opposite case, it

would only lowers the performance, but not the function (all the source code written

for Jailhouse and the stub is designed to work with the most caching enabled).

Pre-Initialization of Jailhouse and the Final Jump All other saved states on the

TXT heap (the individual architectural states of the processors) are not re-applied

during the execution of the MLE. They will only be re-applied once Jailhouse is

completely configured and starts the VMX non-root operations. But by then, it

also has secured itself sufficiently (for example, through the use of the IOMMU and

EPT mappings).

The only remaining task for the stub with those states is to copy them from the

TXT heap into the per-CPU area of Jailhouse. Each processor will copy its own

state from the heap into the same position within its per-CPU area where Jailhouse
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would put it too, without being launch with TXT. This step can then be skipped

in Jailhouse.

With this step the function of the TXT stub is done. It can now make the operating

mode switch to IA32-e and then jump to the normal Jailhouse code. The final jump

location is the same entry point that the normal Jailhouse module would use, only

with some different function arguments to distinguish both from each other.

6.5 Changes Made to the Jailhouse Hypervisor

Because of the design and the pre-initializations that the TXT stub already does,

changes to the hypervisor code itself could be kept to a minimum.

After the entry point of Jailhouse is called, it is now necessary to distinguish between

whether the Linux module called it directly, or if it was target of the TXT stub. In

the later case, it will use a slightly altered startup phase and store the information

about it in Jailhouse’s core (a flag, telling that the measured launch was made).

Later, when the hypervisor is about to be shutdown again, it can look up this

information and decide whether it needs to use the TXT variant or the normal

shutdown.

The Altered Startup In the course of the Jailhouse startup phase, after it was

called by the TXT stub, the core doesn’t need to save Linux’s information anymore.

This was already done during the TXT setup, and later in the TXT stub those

information got copied into the per-CPU area of Jailhouse.

The same is true for Jailhouse’s page table. While Jailhouse would normally replace

Linux’s page table with a new and self-created one, it can now initialize its paging

code with the page table that the TXT stub created. At this point, this table will

contain mappings for the whole hypervisor memory space. Any further mappings

that are necessary have to be done without any changes to the startup code.

Apart from these two changes, the Jailhouse core will execute unaltered. Its final

action during the startup phase is to fill the VMCS’s guest-state area with the

stored information of the previously running Linux and to enable the VMX guest

operations.
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Ending Jailhouse After a Measured Launch Should the measured hypervisor

ever be shut down again, it has the responsibility to ensure that no other software

can impose as it or use secret information of it.

The decision whether a user or a remote host thinks that Jailhouse is running, is

based on the measurements in PCR 17 and 18 of the system’s TPM. Jailhouse has

to ensure that these measurements don’t remain the same after it has shut down.

Other than that, there are currently no secrets kept by Jailhouse, they don’t need

to be protected.

To ensure the change of the measurements stored in the TPM, Jailhouse can make

use of the same technique as Flicker does (see 4.2 on page 55): it extends a well-

known value into at least one of the used PCRs.

This approach could not yet be used in the current implementation for this work.

It would require TPM functionality that could not be implemented within the time

constraints of it. Instead, the current implementation does a TXT reset whenever

Jailhouse is about to shut down. The following system reset will reset the PCRs as

well. This has to be improved in future work to complete the implementation.

Other than that, after the stub has extended the PCRs, a future implementation

also has to shut down TXT properly. This is done with the SMX instruction

GETSEC[SEXIT] and is far less complicated than SINIT.

GETSEC[SEXIT] has to be called on the BSP and outside of any VMX operations

(the hypervisor has to finalize this first). The system will again gather all processors

during this call, but it will not reset their state again. Instead, it will only reset

internal flags and otherwise return the processors in the same state as they were

before being gathered. On the chipset, the processor will close the private TXT

configuration space and if still opened, close locality 2 and 1 (leaving only locality 0

available to the system). After that, it will return control to the software executing

on the BSP.

And with this final step, Jailhouse will have completed the trusted execution of the

hypervisor.

6.6 Open Issues and Constraints

In general, the current implementation follows the process designed in the previous

chapter. Most exceptions to this were already mentioned during the description
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of the implementation itself. This section will relate on the two biggest remaining

problems that were found but could not be completely solved yet.

6.6.1 Fixing the MLE Image

The first of these problems is caused by limitations of the x86 architecture and

thus likely to stay. As explained in the implementation of the initial phase after

the measured launch (see 6.4 on page 88), in order to use its own segments and to

be able to have write access to the memory, it is necessary for the stub to replace

the global descriptor table (till this is done, the stub can not write to any memory

location). This is done with the instruction LGDT, which in turn takes a memory

operand as argument [Int14a]. At the pointed memory location it expects an address

and a limit.

The address will tell the processor the physical location of GDT and with the limit

it gets to know how many descriptors are stored in it. Calculating the limit at the

compile time of the stub is simple, it is in fact a constant. But calculating the

physical location at the compile or link time is not possible, it is only just known at

runtime. And because it is not possible to write to the memory before the new GDT

is set, it is also not possible to write the actual physical location at the runtime —

rendering this whole operation without further changes impossible.

To solve this issue, the setup fixes the hypervisor image after it has been loaded

by it. At this point in the setup, it already knows the Jailhouse configuration and

hence the physical start address of the hypervisor memory. Using that address, it

can calculate the position where in the TXT stub the GDT is located and write

this address into the image at a known position. To prevent this from breaking the

security concept (“no trust in data supplied from unmeasured sources”), this exact

same thing has to be done at the time the hash for a trusted MLE is computed

(with the configuration as input, the hash-calculator can do the exact same thing

as the setup and fix the image before taking the hash).

Currently, this concept is also used for a few other variables that are hard to calculate

at runtime (e.g.: the number of processors the hypervisor expects, to calculate the

size of the per-CPU area to find the configuration), but ultimately those are not

limitation by the platform itself.
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6.6.2 Different Processor IDs

The other problem in the current implementation is another issue caused by a lack

of time, but because it is security relevant, it has to be noted here.

In the design, before the setup ends and enters the measured launch, each processor

saves its architectural state on the TXT heap (see 6.3 on page 85). The concept

is to save this state in an associative array with the processors initial APIC ID as

index. This ID can always be read with CPUID and can not be changed by software,

and thus it can be used across the measured launch without a security risk.

But this would required further changes to Jailhouse. At the time of this writ-

ing, Jailhouse reuses Linux’s logical IDs to identify processors and to identify each

processor’s location in the per-CPU area. This means, at the time the TXT stub

pre-initializes this area and enters Jailhouse, it has to use these IDs too — and at

this point it differs from the concept.

The probably quickest solution for this problem is to store the mapping between

initial APIC ID and logical ID on the heap too. This way, each processor can

lookup its logical ID after it has been waken up in the MLE, and thus it doesn’t

have to break with Jailhouse’s concept.

This is the solution used in the current implementation. The problem is, this in-

formation is not measured and an attacker could change the logical IDs before the

launch, making this a potential attack on the MLE!

To solve this problem, the envisioned solution is to include the mappings into the

Jailhouse configuration — and with that into the measurement. Initial research for

this solution has indicated that Linux’s mappings between processors and logical

IDs are stable across resets, and thus they would support this solution.

6.7 Code Size

To be able to better quantify the effort necessary for the implementation shown in

this chapter, this section will present the size of the added and changed source code

as a basic metric.

One of the main motivations for the use of the dynamic chain of trust is to make

the TCB of the system smaller. This in turn is one of the motivations to use TXT
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Lines of Code

Component Without TXT With TXT

Hypervisor 7368 9759

,→ TXT Stub N/A 2188

Kernel Module 851 2339

,→ TXT Loader N/A 1405

Tools 1013 2373

The completely separate TXT Tool: 1360

Figure 6.2: Table showing the lines of code necessary for the Intel TXT implementa-
tion in Jailhouse. The presented numbers were computed with the tools
sloccount [slo] and git [git] and show only lines containing functional source
code | no comments, no blank lines, no build scripts and no con�guration.

in Jailhouse, rather than the static chain. It is therefore not desirable to enlarge the

existing code base of Jailhouse by much — especially the hypervisor core.

The size of the TXT implementation in Jailhouse, in lines of code, can be seen in

Table 6.2.

As shown, the hypervisor core increased its size by 2391 lines of code — of which

2188 are added by the TXT stub and the remaining 203 as changes in the core

itself. When compared to the original size of 7368 lines, this is a high number — an

increase of around 32:5%. This code is not yet in a finished state and might undergo

subsequent refactoring, but it also still has missing parts. The size is therefore not

likely to shrink.

The same holds true for the kernel module. Its size more than doubled by around

174:8%. And while the size of the module is not as critical as the size of the

hypervisor core, it still represents a large increase of source code that needs to be

maintained.

Both represent the complexity of the measured launch and the many requirements

it imposes on the software which wants to use it — especially the multiple mode

switches, the large amount of predefined structures and the necessary page table

algorithms. A more detailed overview over these can be seen in Table 6.3 on the

facing page.

The numbers about the various tools are the least critical that are shown here.
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Component Lines of Code

Assembly for Mode Switches ≈ 370

Definitions for TXT in Header Files ≈ 850

Paging Implementations ≈ 350

Figure 6.3: Table showing a more detailed listing about the largest parts of the TXT
implementation in terms of source code. These are not separated between
In-TCB and not In-TCB, but only a part of the paging is not required in the
TCB itself (≈ 120LoC).

They complement the implementation: make it easier for the user to compute the

MLE’s hash, create LCP data and decode error codes. But they are not vital to the

function of the measured launch itself (and even with that true, much of the TXT

tool’s source code is the result of the large amount of error-messages stored in it for

the decoding).

6.8 Performance

The added performance overhead by the measured launch is not as important as

the added code size for the presented use case in this work. A hypervisor like

Jailhouse will likely only start once in a system’s runtime. But to be able to derive

estimations for other use case of TXT and to summarize the implementation, this

section will present a comparison between the startup time of Jailhouse with and

without support for Intel TXT.

The presented measurements are taken over the time the systems spends to enable

Jailhouse. This only includes time spend after the IOCTL was already sent to the

kernel part of Jailhouse, and this in turn is about to run the corresponding enable

function — time spend outside of the kernel, in any involved userspace application,

is not measured. The measurement ends upon the finish of this enable function.

During this time, the measurements are further divided into the main parts of the

procedure: Jailhouse kernel driver, TXT loader, measured launch (including the

ACM), TXT stub and Jailhouse core. The parts of this list which are also part of

the start procedure in case it is run without TXT were also measurement in their

unmodified version.
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To take the measurements, the x86 instruction RDTSC was used. This returns the

value of the processor’s time-stamp counter at point of the instruction’s execution.

The TSC is not influenced by the measured launch, and on modern processors

(Pentium 4 and following [Int14b]) it is incremented at a constant rate, unrelated to

the actual clock set for the processor. But it doesn’t represent an immediate time

value in seconds or something similar, for this, it first has to be mapped.

To create this mapping, a first series of measurements was taken on the target

platform (Intel Core i7-4770S at 3:10Ghz, 8Gb RAM, Gentoo Linux with kernel

3.18.0-rc5): in one microsecond the TSC is incremented on average by a value of

3; 092:94. This average was computed over a set of 601 measurements, each taken

with an interval of one second. The standard deviation over these measurements is

only 0:062, resulting in a 95% confidence interval of ±0:0024 per measurement. Be-

cause this interval doesn’t even represent a nanosecond difference per measurement,

and the overall time of the launch is also influenced by disk activity, the presented

average is assumed to be the exact value.

With this rate established, the launch of the hypervisor — divided into the named

parts — was measured forty times, twenty with and twenty times without the TXT

extension. Because the shutdown of Jailhouse with TXT support is not completely

implemented yet, it was necessary to reset the system after each of the measure-

ments, resulting in a cold launch each time. The final results can be seen in Table 6.4

on the next page.

As can be seen, the extensions made for Intel TXT and the measured launch have

made for a significant increase in runtime of the hypervisor launch. And while the

extension-code can still be optimized (for example, the current implementation of

the TXT stub executes with no caching enabled), it can be seen that the measured

launch alone nearly doubles the time consumed by the unmodified Jailhouse kernel

driver and the core together. It can thus be assumed: unrelated to any further

optimizations, the time of the Jailhouse launch with Intel TXT will at least be

twice as long as it takes Jailhouse to start without TXT.

Further and more detailed measurements revealed that much of the time spend in

the kernel driver and TXT loader is spend on disk activities (loading the image,

configuration, ACM and LCP data). The major part of the TXT stub’s runtime on

the other hand (1; 388:66ms with a 95% confidence interval of ±0:0333ms) is spend

on the creation of Jailhouse’s paging. This time may represent the biggest possible
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Component Average (ms) Std. Dev. (ms) 95% Conf.
Inter. (ms)

Jailhouse Kernel Driver 37:31 8:836 ±1:877

,→ Without TXT 32:95 0:101 ±0:021

TXT Loader 38:45 6:975 ±1:482

Measured Launch 856:15 4:114 ±0:874

TXT Stub 1; 401:48 0:157 ±0:033

Jailhouse Core 427:53 2:278 ±0:484

,→ Without TXT 458:65 2:281 ±0:485

The Whole Process 2; 760:92 10:969 ±2:330

,→ Without TXT 491:61 2:308 ±0:490

Figure 6.4: Table showing the measurements of the launch of a Intel TXT enabled Jail-
house, compared to a unmodi�ed version. The shown results were computed
over a set of 20 measurements for each version, each measurement resulting in
a complete system reset before the next.

optimization potential for this whole process and should be investigated further in

future work.
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7 Security of the Trusted Hypervisor

With the presentation of the design and implementation of the trusted hypervisor

in Chapter 5 on page 61 and Chapter 6 on page 75, it was shown what steps are

necessary to make use of the measured launch with Intel TXT.

After the launch, any remote party with knowledge of the system in question can

request evidence, in form of a TPM quote (see 3.3.1 on page 36), to verify the

state of the system and gain trust in it — deciding whether a trusted hypervisor

was launched and is still running, or not. To further increase this trust, it is now

necessary to show that the presented work is secure and can prevent forging of

results in the quote.

This chapter will present an analysis of the provided security by the design and

implementation. It will present possible attacks on the measured launch and show

how the presented system can defend itself against them. Most of it will heavily

depend on the security of the TPM chip and the proper integration of it with the

other involved hardware.

Due to a lack of time after finishing the design and implementation, this analysis

could not be done using already established methods for security and risk analysis

(examples can be found in [NA12, Nis12, BRC12]). This might present a subject

for further work on this topic.

First of all, in Section 7.1 on the next page, the assumptions made for this analysis

will be presented. Following them, in Section 7.2 on page 103, the same will be done

for the potential attacker of the system — what motivations does he have, which

potential methods and what knowledge. The discussion of the possible attacks in

this framework is afterwards split into three parts. The first part, in Section 7.3

on page 104, will consider attacks involving the hardware of the system. After this,

Section 7.4 on page 108 will discuss attacks via the software of the system, before

the launch and afterwards. The final section is 7.5 on page 113, and will show the

limitations of the system that were found in this work.
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7.1 Assumptions About the Analysed System

The base of this work is that the user trusts the system’s hardware — at least the

hardware that is involved in the measured launch. This means, the first assumption

has to be that the processor, chipset (including any built-in IOMMU), main memory,

the TPM and the bus system involved to connect these are behaving as specified

— an illustration of the involved components can be seen in Figure 3.7 on page 45.

Especially the management of the access to the TPM’s localities has to behave like

specified in both the TPM spec. [TCG05] and the SMX spec. [Int14a].

Furthermore, it has to be assumed that the TPM was properly initialised before

any attack can happen. The owner of the system was able to take ownership of the

TPM, and with that create the EK and SRK. Following that, he was able to create

at least one AIK and transmit the public portion of it unchanged to all relevant

remote parties (including himself). Finally, he was able to create and fill the for

Intel TXT necessary NV index, so that it may only be possible for either himself or

a trusted party to change the stored information in it.

As for the involved software, namely the ACM and the launched hypervisor, the

same has to be assumed: they have to behave in the intended and trusted way. For

the ACM this means, it will behave like specified in the TXT specification [Int14c].

It will measure the correct values of the configured MLE into the TPM, check upon

the specified error conditions and put the processor into the correct state, before

handing over the control immediately to the configured MLE. The hypervisor part

of the MLE in turn will be capable to effectively protect itself from any corruption,

until either the system resets (and with that the TPM) or it ends its operations

orderly. For this it makes use of the shown techniques in Chapter 2 on page 5.

There are no assumptions about the guest software of the hypervisor or about the

software running before the measured launch — at least once the TPM is initialized

like described above. In case of a difference from this for a specific attack, it will be

explicitly stated in the description of the attack.

Lastly, during the first two sections of this chapter (7.3 on page 104 and 7.4 on

page 108), the questioned trust relation has to be between the MLE and a remote

party (either the user, or any system independent from it, connected via a network).

This relation can not originate from within the system itself — for example, the

started MLE will not be able to tell if it was started correctly or not. Why this

assumption is necessary will be shown in 7.5 on page 113.
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Figure 7.1: Overview over the analysed system, before, during and after the measured
launch. The top part of �gure describes, from top to bottom: active compo-
nents and access possibilities to the MLE; controlling component of the mea-
surements; the highest, opened locality of the TPM. The middle part shows
the 
ow of main parts of the presented design during the main phases of it.
And at the bottom, it is shown which component takes whose measurement.

Overview Over the Assumed System To get a better overview over this situation,

and to wrap up all the details that were described one by one in the previous

chapters, please refer to Figure 7.1.

7.2 The Attacker Profile

The prime target of an attack on the system is to influence it in a way, that upon a

request for a remote attestation of its state, it will be able to send convincing evidence

that the hypervisor in question is running on it, with the expected configuration

and therefore expected guarantees, although in reality it is not. That may mean,

it started the wrong or a changed hypervisor, the hypervisor is not running on the

correct hardware (but again in a virtualization or emulation) or it is not running at

all, but still reports so. Each of those will affect the relation between the system in
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question and the trusting party, and will lead to wrong assumption, which in turn

may lead to unjustified discolour of secret information or surrender of control over

critical systems.

To mount such an attack on the system, the attacker can use software running before

the trusted launch or afterwards, from within one of the hypervisor’s guests. He may

also have access to the operating system’s kernel and even to the module doing the

setup for Intel TXT.

Physically he has access to the system’s hardware. He can insert or exchange add-

in cards and components of the setup (if he exchanges the processor, he may only

exchange it for another trusted one). But he doesn’t have the tools or knowledge

to exchange any parts that are permanently mounted on the motherboard — like

for example the TPM chip. Otherwise, he can only mount simple attacks on the

hardware itself (as the TPM specification [TCG05, TCG11a] requires, too) and has

either not the equipment, or the knowledge to mount sophisticated attacks on the

bus system or any of the involved components.

Lastly, he doesn’t possess any of the involved secret keys (in case of an asymmetric

key, the private part) prior to a successful attack on the system, and he doesn’t pos-

sess any knowledge or the required time to break one of the involved cryptographic

algorithms (SHA-1, RSA with 2048 bit keys, the Diffie-Hellman key exchange).

7.3 Hardware-Based Attacks

Despite being reduced to simple attacks, a potential attacker is still able to mount

the attacks discussed in this section.

7.3.1 Malicious DMA Devices

Because the attacker has physical access to the hardware, it is a simple operation for

him to install additional add-in cards or exchange existing ones. If those new cards

or other devices have DMA bus mastering capabilities, they are able to initiate access

to the main memory at any given time during the runtime of the system, and write

or read information from there without interception by the operation system. They

may use this ability to change the hypervisor code after it was already measured.
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The countermeasure against this type of attack is the same that was introduced

in 2.2.2 on page 12 and 3.4.2 on page 42: a properly programmed IOMMU and the

properties of the GETSEC[SENTER] instruction. In the presented architecture those

are applied at two points during the measured launch.

At first, the ACM (whose memory is additionally protected by the DPR) is loaded

by the processor into an internal area, designed to exclude any external and inter-

nal agents other than the BSP running GETSEC [Int14a]. This is done before it is

measured and is kept up during its execution.

During that execution, it will check upon the second protection: the PMRs. Before it

measures the MLE, it will check that it is covered by at least one of those ranges and

thus protected from any DMA during and after the measurement (till the MLE itself

decides to drop this protection). Furthermore, it will also check that its external

counterpart and the TXT heap are properly protected by the system’s DPR. Should

any of these checks fail, it will mean an instant system reset (a TXT reset).

Together they guarantee that during and after the measurement no malicious device

can influence the measured data — the later reported PCRs 17 and 18 will contain

measurements of DMA protected memory areas. Because the ACM also checks that

the DPR protects the heap, no DMA agent can influence the data the ACM puts

there — the other parts of the heap, like the “SINIT to MLE” area, are still not

trustworthy.

Any change before this protection was in place may be done at will, but will be

measured as well by a trusted ACM. This may therefore only result in a denial-of-

service by forcing the system into an untrusted state.

7.3.2 Change of Firmware Settings

Attackers with physical access to the platform can reset the system’s firmware or

change settings of it. They may even use the BIOS to reset the TPM (this is allowed

by the specification for maintenance).

If the state of the system’s firmware is of interest for the trusting party, then they

have to request the states of the PCRs 0–3, as well as those of the PCRs 17 and 18.

Those are specified to contain the relevant settings of the BIOS and its configuration,

and the same for any option ROM. It is also not possible to reset those PCRs without

a system reset [TCG12].
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The reset of the TPM is more problematic, but will also at most result in a denial-

of-service of the system in question. Upon a TPM reset, the SRK is permanently

deleted from it. This SRK in turn was used to encrypt the private part of the

AIK that is used to sign the measurements. If the SRK doesn’t exist anymore, this

private part can not be decrypted anymore and is rendered useless, implying that

it also can’t sign any measurements anymore and thus can’t convince any remote

party of the authenticity of a sent measurement.

7.3.3 Attacks via Power Management

Systems that possess the ability to enter different power states may be abused by

entering a sleeping state where both the hypervisor’s and the hardware’s protection

aren’t active anymore, and thus, can not protect the measured environment from

being changed.

On x86, the most problematic state changes are ACPI’s S-state transitions [Int14c]:

• S1: in this state the protections will remain in place.

• S2: is not supported by Intel.

• S3–S5: these are problematic and may allow changes via hardware access

after the system has been put to sleep.

To prevent the system from being put to sleep into a vulnerable state, it can either

use a feature provided by TXT capable chipsets or otherwise by the VMM. Next

to the registers described in Table 6.1 on page 77, the private TXT config space

also contains a Secrets register. In case the MLE writes to this register, the chipset

will remember this write and during an attempt to enter S3–S5, it will instead

reset the system — resulting in either a denial-of-service or a reset attack (see next

subsection). The alternative to this would be to use the hypervisor, it can setup

its guest page tables 2.2.1 on page 8 and the IOMMU 2.2.2 on page 12 in a way to

disallow any access to the relevant ACPI tables.

Those tow methods will prevent software from transferring the hardware into the

problematic power states and thus prevent the MLE state from being changed.
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7.3.4 Reset Attacks

The last attack discussed in this part is the possibility to reset the system. This

very simple attack can easily be done by anyone that has physically access to the

system — or with software means, as described in the previous attack — and it

won’t influence the measurement of the hypervisor directly. Instead, it can be used

to attack badly designed protocols.

When a remote user starts the process of remote attestation with the system in

question, it will get a signed measurement in return (see 3.3.1 on page 36). With this,

he can verify the state of the system at the moment the measurement was signed.

By additionally sending a nonce in the original request, this signed measurement is

also guaranteed to be fresh. But only fresh at the time of the signature. After the

requester has received the reply, the attacker can reset the system and boot another

software of choice. The requester may still think at this point that the software,

whose state he has verified, is still in control.

This kind of attack can not be prevented solely by using Intel TXT. Instead, the

communication protocol has to be improved to counter it. Possibilities for this have

been researched already [STRE06, GPS06, MPP+08].

The basic idea of those solutions is to create a secure channel in combinations with

the reply to the request for remote attestation. McCune et al. propose the use of

asymmetric encryption for this purpose:

1. After the MLE has been launch, it will create a fresh RSA key pair — it may

use the TPM for this. It will then extend the public part of this key into an

unused PCR, which is only accessible by it itself (in the present architecture

it might use PCR 19–22 for this, those are already protected by their locality

modifier). Otherwise, it will keep at least the private part secure (might be

accomplished by the same mechanism securing the VMM).

2. At the time the remote user requests attestation (together with a fresh nonce),

it will include this PCR into the list of PCRs signed by the quote. The TPM

will thus not only sign the PCR 17 and 18 — warranting for the state of the

system — but also the hash of the public key for this sessions.

3. In the reply to the request, it will then send: the PCRs 17, 18 and the PCR

containing the key hash; the quote signed by the TPM (the signature will

contain the same set of PCRs and the nonce); and the public key whose hash

is signed by the quote.
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4. The requester can now verify that the PCRs contain a valid measurement of

the ACM and MLE, and it can verify that the received public key belongs to

the system that sent the quote.

5. All future communication between those two will now be encrypted by those

two keys.

This protocol is not perfect yet, it is secure in the communication direction from

requester to the trusted system, but it shows the principle: if the signed quote

contains a valid measurement for PCR 17 and 18, then the software on that system

is trusted. In turn, it can be trusted to handle and secure the PCR that contains

the key-hash correctly, together with the key itself. It is required to never safe

the private key, unless properly secured, so that upon a reset or shut-down of the

software or system, it will be lost and a new session has to be established. This

new session will not be able to decrypt any message send with the key-pair of the

old system and the protocol can react to that properly, rendering the reset attack

ineffective.

Alternatively to using RSA, and only exchanging a single key, the protocol might

exchange key factors for the Diffie–Hellman key exchange [DH76], and with that

make the communication secure in both directions [STRE06].

7.4 Software failures and attacks

Concerning the software of the target system, an attacker is far less restricted. This

section will present the considered attacks in three parts: attacks before the launch,

during it and attacks against the MLE from within one the hypervisor’s guests.

7.4.1 Software Attacks Prior to the Measured Launch

Before the measured launch has happened, a potential attacker has complete access

to the system and is unrestricted in the privilege level he might use. As he has

physical access, this might be as easy as booting his own operation system from a

portable media.
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Attacks Against Long Time Storage Attacks against data that are stored on

the system’s hard drive, or other long time storage systems, can corrupt either the

stored MLE image (including its configuration), the ACM or the AIK.

All of them can at best lead to a denial-of-service of the system. The MLE and the

ACM are measured, and any change to them would also be propagated to the PCR

values. Because the used cryptographic hashes are collision and pre-image resistant,

it is infeasible for the attacker to change the MLE or ACM in a (useful) way and

still keep them resulting in the same hash value.

As for the AIK: its private part is encrypted by the private part of TPM’s SRK. This

is specified to never leave the TPM (not even encrypted). Nearly the same holds

true for the AIK, its private part might never leave the TPM unencrypted (it is a

non-migratable key [TCG11a]). Both ensure that an attacker might never decrypt

the AIK and gain knowledge of what the private part is, even if he has access to its

stored version. Hence, he can not forge a signature made with it and might only

destroy it, so it can not be used later on.

Attacks Against the TPM Attacks against the TPM without the owner’s secret

are covered by its design. Most important for the presented system is that the NV

index, used to store the LCP, is properly write-protected (only for the owner or a

trusted other party). Otherwise an attacker might change it.

But even then, using a changed LCP might only result in a denial-of-service. It does

not influence directly what the system stores into the PCRs, and thus any change

will also propagate into the PCRs and will later be visible during the attestation.

Other than that, it is important to re-iterate that a software attack must never have

control over locality 4 (as is specified in the TPM specification [TCG11a, TCG05]).

If that is not given, then an attack might reset the dynamic PCRs at will and extend

values into them, although the software represented by those values has never run.

After that, the remote attestation would confirm those values and the trusting party

would assume that the software is running, although it is not.

Attacks Against the Setup The last possibility consider here are attacks against

the setup of the measured launch (described in 6.3 on page 80).

Because the attacker’s first target is to corrupt the MLE in way, so it will behave in

an untrusted manner, although the remote attestation gives evidence against that, he
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might not corrupt the setup in a way that makes it fail (which again will only result

in a denial-of-service, because the launch will reset the system). This implies, he has

to use a trusted ACM, a trusted MLE (including the Jailhouse configuration) and

he has to do the setup in way that makes it launch. He may modify the processor’s

state, values on the TXT heap (unless this will prevent the launch from happening),

the MLE page table and he may program other devices in a malicious way.

Changes of the processor’s state are undone during the measured launch, regardless

of their intention. After the launch, the processors will always contain the states set

by the ACM. Only the MTRRs are different. They are not changed, but they are

specified to be checked by both the GETSEC[SINIT] call and the ACM afterwards

— making an invalid change impossible.

The TXT heap on the other hand may be changed undetected. From its four sections

— “BIOS Data”, “OS to SINIT”, “OS to MLE” and “SINIT to MLE” — only the

first three may be changed, the last section is created by the (trusted) ACM and

may thus not be influenced without a malfunction in the ACM.

The first of them, “BIOS Data”, is required to be initialised by the BIOS, but may

be changed afterwards. In the presented MLE though, it is not used and changes

will not have influence (interesting values in this section are covered by the Jailhouse

configuration).

After that section, the heap contains the “OS to SINIT” section, which is used

to configure the ACM, foremost to state what MLE shall be measured. Consistent

changes here would cause the ACM to measure a different MLE, and hence would not

result in the trusted PCR values. Any inconsistent change is specified to be noticed

by the ACM [Int14c] — this includes the configuration of wrong PMR settings and

the configuration of the wrong LCP data (whose signature is stored securely in the

TPM). Thus, a change here would either result in a system reset, in case they are

wrong, or in the launch of a different MLE, both failing the target.

The last modifiable section, “OS to MLE”, is also the most interesting. It stores the

data given by the setup to the MLE,and is not checked by any other component.

In the presented design, it contains the stored MTRR settings and the architectural

state of the processors before the launch.

For the architectural state, the MLE only checks if the data structure is correct (an

associative array, with one entry per processor id; see 6.6.2 on page 95 for open

issues concerning that topic). The MLE does not however apply any of these states,

but will only use them once the hypervisor launches the VMX guest operations, and
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then the MLE will not be affected directly, but only the guest. This might in turn,

again, lead to a denial-of-service, but will not change the MLE undetected.

As stated before, it was not yet possible to fully analyse what the MTRRs might

affect during the MLE execution. Please refer to the discussion in 6.4 on page 91

for more details on this topic. Future work here is mandatory, but it was also not

possible to find a useful way of how this might be successfully abused.

Like stated before, the only remaining heap section, “SINIT to MLE”, is created

by the ACM, and thus does not allow any influence. Attacks through malicious

programming of DMA devices are handled in the same way as the attacks discussed

in 7.3.1 on page 104. Other external events that can be programmed are also blocked

by the changes applied during the operation of GETSEC[SENTER] — at least till the

MLE can protect itself properly against them. Leaving the attacker with only the

MLE page table as surface.

In this case, he at least has to follow the rules set by the ACM, otherwise the system

would reset. By doing so, he could map a different MLE, but this would be noticed

during the remote attestation, because the measurements would be different. This

means, he has to map the correct MLE, in order for the correct measurements to be

taken. The only remaining possibility is to change the mappings between linear and

physical address into an unexpected physical layout. This was already discussed

in 6.4 on page 87, and it was also shown how the MLE can defend itself against it.

This concludes the attacks that were considered to be possible before the launch.

7.4.2 Attacks Against the Measured Launch

The next logical step, after the setup is done, is the measured launch. Software

attacks here are generally prevented by the design of GTESEC[SINIT]. This was al-

ready described in details in 3.4.2 on page 42 and is based on the secure environment

created by it.

After the setup instructs GTESEC[SINIT], the processor will take over the control

of the system, it will disable all processors but one, mask all external events and

protect critical areas from DMA. At this point, no user defined software can execute,

and after it is done, it will only hand off control to a verified and measured ACM.

Which in turn is run inside its own protected processor area, still with all other

processors disabled, and only allows code inside the measured MLE to take over

control.
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This make software attacks during this step impossible — they simply have no

processor to execute.

7.4.3 Attacks Against the Measured Launch Environment

The last possible attack surface is after the MLE has launched. This is not covered

by guarantees made by Intel TXT, but has to be done within the MLE. In case of

this work, it was assumed that the started hypervisor is able to protect itself and

its guests properly (by using, for example, SLAT or IOMMU protection) — which

in turn is not part of this work, but is also actively researched.

By not using any external information, but only the ones given to it by either the

ACM or by the (measured) hypervisor configuration, the TXT stub lays the ground

work for this. This way, it can not be influenced by any other software (DMA is

still blocked by the PMRs and external interrupts or NMIs are not enabled before

the beginning of the VMX guest operations).

For the hypervisor itself, there are three new areas to protect, after it has been

launched with TXT. It needs to protect the private TXT configuration space, the

opened locality, and it needs to prevent other software from imposing as the hyper-

visor.

The TXT configuration space is programmed via MMIO (see 6.1 on page 76), and

this is not filtered any further by the chipset. Any software that has access to

the physical address range of the private space can also program TXT with it. To

prevent guests from doing so, the hypervisor has to make sure that this physical

address space is never included in one of its guests address spaces (exceptions may

be made, but only if this is explicitly the desire of the system’s operator and even

then it is probably enough to only expose the public part of the space). In Jailhouse,

this is done by either not mapping this memory area in any guest configuration, or

by mapping it read only. Jailhouse in turn will then apply these configurations via

the guests SLAT (see 2.2.1 on page 10) and IOMMU remapping structures (see 2.2.2

on page 12).

The same has to be applied to the TPM programming interface. This is organised

much in the same way as the one of TXT. Each locality (0–4) has its own set of

memory mapped registers that are programmed via MMIO — of which each mapping

is exactly one page long and has a predefined physical start value (0xFED40000–

0xFED44000). After the launch, locality four and three are closed again, and locality
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two is open to be used by any software that has access to its address range (starting at

0xFED42000). To prevent unauthorized software from accessing this more privileged

interface (in contrast to the always open locality null), it has to be secured with the

same methods as the TXT configuration space.

Attacks whose target is to impose as the hypervisor, after this has already stopped

executing, are prevented in the presented design by either resetting the whole system

before handing off control, or extending a further value into PCR 17 and 18.

7.5 Known Limitations

After discussing how the presented system can defend itself against (the considered)

attacks from software and hardware, this section will discuss what known limitations

it has. This will be done independent from the given assumptions about the system

and attacker.

Any limitations that are the result of the current implementation will not be dis-

cussed here, but were discussed in 6.6 on page 93, they are not considered to be a

design flaw.

7.5.1 No Trust from Within the Launched System

The most important limitation of the presented architecture is that the software

launched with the dynamic chain of trust can not trust itself. For example, in case

of the launched hypervisor Jailhouse, it will not be able to decide on its own whether

it was launched correctly with Intel TXT, or not. This decision can only be made

by a remote party, such as a user or a remote system.

Let’s assume a systems such as displayed in Figure 7.2 on the following page. In this

scenario the hypervisor will not be launched on real hardware, instead it is launched

on a (hypothetical) perfect emulation of the system. It will not be able to see any

differences between the presented environment and a real system, hence it can setup

and launch the dynamic chain, just as it would otherwise. Any other checks it can

do after it has launched, will also behave like they would on the real hardware (for

example queries to the TXT config space or the TPM).

On this system, the only thing that can not be emulated is the knowledge of the

real TPM’s SRK and hence the decryption of the used AIK — it might present
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Figure 7.2: Diagram showing a system where the measured launch is not done on real
hardware, but on top of a perfect emulation. In a scenario like this, the
launched hypervisor will be unable to determine whether he is running on real
hardware or not, and either will he be able to determine whether he represents
a trusted con�guration or not.

the hypervisor with an arbitrary other AIK, in case it wants to use it. But the

hypervisor itself can not use this to its advantage.

To test whether the real TPM signs a quote with the correct AIK, or the emulation

with an arbitrary other key, it has to know the corresponding public key of the AIK.

But how can it make sure that the emulation doesn’t just change the key before it

is used by the hypervisor? It has to use the knowledge it is about to verify, in order

to verify, whether it can trust this knowledge, or not. This is tautology, and hence

it will always be exactly what the emulation wants it to be.

In contrast, even this system can not forge a quote to convince a remote verifier to

trust the system. It is still not able to decrypt the AIK and hence can not make a

valid signature with it. This has still to be done with the real TPM and this will

only then contain valid measurements, if the measured launch was done on the real

hardware.

7.5.2 System Management Mode

During the discussion of the measured launch, it was also described that the pro-

cessor will mask the SMI-pin of the processor. Till the TXT stub unmasks this pin

again via GETSEC, it is not possible for the system to enter the System Management

Mode (abbr. SMM ).
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What exactly is done, in case this mode is activated, can not be influenced during

the normal system operations and is also not known in most cases. It is part of the

firmware of the system and implements tasks like power management, monitoring or

any other task the firmware might see fit to execute transparently to the operating

system [Int14b]. There is no obvious way to tell whether these tasks are vital to the

system or not. Because of that, the MLE has to enable them again eventually.

After that, it again looses complete control over the system in case a SMI is trig-

gered.

The design presented in this work fails to address this issue. One intuitive solution

would be to argue, that because it is part of the system’s firmware, it has to be

measured by the static root of trust and thus can also be included in the quoted

PCRs. But while this is true, the SMM has been shown to be attackable even during

the runtime, failing to isolate itself properly [WR09].

A possible remedy for this problem might be Intel’s SMM-transfer monitor (abbr.

STM ) [Int14b], but it was not possible to evaluate this feature during this work,

and thus it is not possible to make predictions about its security.

This new feature is described to add a new kind of VM exist to VMX. Those would

be triggered in case the VMM or its guests receive a SMI and normally would

immediately enter the SMM routines. But instead of that, they would enter a

separately described guest (with its own VMCS) that in turn runs the normal SMM

routines. Because this is a normal VMX guest, it can be forced to follow the same

restrictions and the MLE could again protect itself effectively by not mapping its

physical memory in the SLAT.

But to confirm this, future work has to explore those possibilities in detail.
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8 Future Work

Throughout this work, it was already pointed out that several areas will need further

effort, so they can be better used and/or be better understood. Because TXT

touches multiple areas of the system architecture and requires cooperation of many

system components in order to work, it was not possible to explore them all in their

full depth.

Concerning the task of this work specifically, there is still work open in order to

complete the implementation and to fully comply with the presented design:

• At the moment, the MTRR settings, stored during the setup phase of the

measured launch, are restored unchecked. In order to not compromise the

MLE, it is necessary to implement checks which at least cover all the measured

areas and all the resources that are later allocated by the hypervisor, and which

test whether the areas have correct cache settings, or not. Because the stub

can not know what the hypervisor will use and what not, this needs to be done

in both parts of the MLE.

• The pass through of the logical Linux processor IDs needs to be fixed — MLE

and hypervisor need to be independent from any data created by Linux and

not measured during the launch. The envisioned solution for this was also

already presented, and is to include a fixed translation table from initial APIC

ID to logical ID into the hypervisor configuration, but this also needs to be

evaluated further.

• Lastly, the shutdown of Jailhouse, when launched with TXT, is not yet possible

(it will always reset the system instead). In order to prevent software running

after Jailhouse from imposing as it, there needs to be a rudimentary TPM

implementation which is able to extend values into the dynamic PCRs that

represent Jailhouse.

Apart from these, the current implementation is functionally complete. Although it

needs some further optimization and cleanup, it is able to stably launch Jailhouse.
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More work needs to be done in order to use this solution in productively used

systems. For one, the initial setup of the TPM — taking ownership, creating and

retrieving the AIK and installing the TPM part of the LCP — has to be researched

more. Currently, this all needs to be done by hand and from within an already

installed operating system. But in case of a more widespread deployment of the

presented techniques, this will have to be done in a automatable way.

The same holds true for updates of the hypervisor. But because Intel’s LCP data

are already designed to make this possible without any modification of the system’s

TPM, this is not as complex as the initial setup. It will nevertheless still be nec-

essary to create a suitable scheme to distribute the updates of the hypervisor, its

configuration and the new LCP data (signed with the RSA key whose public part

is stored in the system’s TPM).

Concerning the security of the presented system and the hypervisor in general, the

biggest open point for further work is the SMM, and how to handle this mode in a

way, so it can not influence the measured hypervisor in a malicious way — might

it only be constant interrupts that slow it down considerably. Intel’s SMI monitor

concept might be the answer to this problem, but this needs to be researched in

greater detail. Furthermore, an alternative for this on AMD platforms is not yet

known — making this a very limited solution.

A similar concern for portability can also be seen in Intel TXT. While Jailhouse

recently gained support for AMD processors in general, the trusted execution is

only possible on Intel. Because of the limited time for this work, it was not possible

to research AMD’s solution in more detail as well. On a first glance, it seems to

explore the same principle architecture, but with less effort necessary for the setup.

Instead, the work that is done by the ACM in Intel’s solution has to be done by the

MLE on AMD — and hence the responsibility is shifted away from the manufacturer,

more towards the using software.

A last point to consider would be to provide the guests of Jailhouse with a simple way

to make use of this system, too. Currently, only the hypervisor is measured, but it

might also be possible to let the hypervisor extend measurements of guests and their

config into a different set of PCRs upon their load and activation. This would also

required a simple TPM implementation and a maintainable way to evaluate these

measurements afterwards — especially when multiple guests are involved, exceeding

the number of dynamic PCRs available.
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9 Conclusion

Starting this work, it was shown how it is possible on modern x86 systems to im-

plement a Virtual Machine Manager, fulfilling all requirements raised by Popek and

Goldberg. Thanks to architecture extensions like VT-x or IOMMUs, this is now

possible with very little need for software intervention along the working of such a

VMM.

This reduces the necessary code base and can raises the runtime performance. In

hypervisor solutions like Jailhouse, both advantages are used to provide safe segre-

gation to the guest software running on top of the VMM. Further down the line,

this even makes it possible to eventually verify them according to existing safety

standards, and use them to implement systems with mixed criticality on commodity

hardware.

But this also means, those guarantees can only be made in case the hypervisor is

intact — starting at the point where it is loaded and initiated. It becomes the single

point of failure for a critical system.

It was thus explored how the concepts of trusted computing can be used to solve

this important task, to verify that the correct hypervisor was loaded and started —

so that one can trust it.

The TPM provides proven and well defined processes to make such a task feasible.

But the legacy method for implementing this process — the static chain — does

not fit the requirements set by hypervisors like Jailhouse. In this work, it was

therefore decided to research the dynamic chain in form of Intel TXT. It reduces

the Trusted Computing Base down to only the own software and the used hardware.

Furthermore, by creating a secure and encapsulated environment on demand, bare

of external influences, it makes it possible to start the chain at every point during

the runtime of a system.

But it was found that this flexibility comes with the price of a complex set of require-

ments, set for any software that wants to make use of it. With the example of the
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hypervisor Jailhouse, it was shown that such a target software needs to incorporate

code which can execute in two operating modes of the x86 architecture. It needs to

be able to bootstrap the system offhand, with only very limited external informa-

tion — information evaluated or measured during the dynamic chain of trust. Using

these, it has to bring the system back into a state where the target software can

execute — in case of Jailhouse this requires yet an other operating mode switch.

Despite of these intrusive prerequisites, this work was able to present a working

design and an example implementation of the same for Jailhouse. It is now possible

for Jailhouse to launch using TXT, extend its hashes into the TPM and test them

for a match before it starts — the main task was thus solved. Using existing software

stacks for TPM, this makes it also possible, via the well defined process of remote

attestation, to provide convincing evidence for remote users that Jailhouse is really

running on the target system.

Moreover, it was presented just how much more work these prerequisites cause for

the reached solution: the code base of the hypervisor core is increased by one third

and its startup time slowed down by a factor of five — the large majority spend on

the forced operating mode changes.

At last, it was shown what deliberate attacks can be resisted with the presented

hypervisor. Short of sophisticated attacks on the hardware and attacks through

firmware modes like the SMM, it was not possible to find other working attacks

during this work.

Because only deliberate attacks could be found to work against such a system,

this makes TXT a valuable addition for safety critical applications. With it, they

can be designed to only run in case a correct hypervisor was started, and through

a second channel they can provide secure evidence for it. Random software errors

may only result in a denial-of-service, which can be detected and fixed by redundant

systems.

If the application scenario of the used hypervisor makes is necessary to answer the

question, whether it was started with the correct basis or not, then implementing

Intel TXT is a valid option.
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A Implementing VMMs with Trap

and Emulate

The commonly used approach to fulfill all three characteristics of a VMM de-

fined by Popek and Goldberg (see 2.1 on page 5) is the use of a trap-and-emulate

scheme [AA06]. Instructions of the VM are executed uninterrupted as long as they

don’t access sensitive states — and thus possibly violate the control characteristic by

accessing resources not allocated to them. Upon executing such a sensitive instruc-

tion the processor would cause a trap — on x86: cause an exception — and return

control from the VM to the VMM. The VMM can then determine the cause for the

trap and emulate the effect, or set the VM into an error state if the instruction was

illegal. A simple example on x86 for this is the outb instruction. Executed with an

I/O-port as argument that is not allocated to the respective VM, it would violate

the control characteristic and thus has to be trapped.

De-Privileging To achieve such traps, the VMM has to make sure that all instruc-

tions that could possibly violate the control characteristic are run with a privilege

level lower than the system-level — on x86 this usually means to run them with priv-

ilege level 3 [NSL+06]. This way, most of the instructions of an application, such

as arithmetics, position relative control instruction and simple memory accesses,

will execute as they would outside of the virtual machine. All other instructions

that access important control structures, such as page table registers, interrupt han-

dling and segmentation, will cause an exception because they are executed with an

insufficient privilege level.

On x86 though, this is not possible. Instructions such as pushf and popf will access

sensitive information and will fail without causing a trap, when executed in an insuf-

ficient privilege level — for example, executing popf on any other privilege level than

null will not change the interrupt flag IF but also not cause an exception [Int14a].

This behaviour violates the first characteristic of fidelity.
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Shadow Structures The second step to implement the original trap-and-emulate

scheme, is to manage shadow structures for all the states that the VM can’t change

directly. To restrain the VMs from violating the control characteristic, structs like

the interrupt- or descriptor-table have to be protected by the VMM. But in case

the VM access these information, it has to be presented with the expected values,

otherwise the VMM would violate the fidelity characteristic. For this it uses the

shadow structures; it traps accesses to the original structures, stores the data in the

VM’s shadow struct and puts an appropriate values into the real structure. In case

the VM wants to access the information in the structure, the VMM can present the

values previously stored and thus emulate the desired effect.

This is also not possible on x86. For example, “mov EAX, CS” is a valid instruction

under every privilege level and will load the register EAX with the current code

segment selector. This selector will contain the current privilege level in its lower

2 bits, and this value will be higher than null in a VM, even if the instruction was

executed by the VM’s operation system. This is clearly not the desired effect and

thus violates the fidelity characteristic.

Memory Tracing Lastly, it is not possible to trap every access to sensitive struc-

tures with only the scheme presented under De-Privileging. Page tables, for example,

are stored in the VM’s memory and are accessed with normal memory access in-

structions, but they are also sensitive, because the VM has to be restrained from

using physical memory not allocated to it. To implement this restriction, the VMM

has to shadow the page table that is used during the execution of the VM. It can

do this by trapping all accesses to the register storing the top page table structure

(CR3 on x86) and by putting its own structure there. In there, it can mark all pages

containing sensitive structures with a higher privilege level than the VM’s and thus

trap all accesses to them. The addresses of those structures can again be learned by

trapping instructions (for example, trapping accesses to the CR3 register for storing

the top level page structure).

Binary Transformation To implement those three techniques, it is necessary that

all instructions which access sensitive information can be trapped. This was also

observed by Popek and Goldberg when they formalized virtual machines. Subse-

quently, they formulated and proved the following theorem:

Theorem A.1. For any conventional third generation computer, a virtual machine

monitor may be constructed if the set of sensitive instructions for that computer is

122



Appendix A. Implementing VMMs with Trap and Emulate Benjamin Block

a subset of the set of privileged instructions.

By observing the examples given in both De-Privileging and Shadow Structures, it

can be seen that x86 does not fulfill this requirement and thus, it is not possible to

construct a VMM as defined in 2.2 on page 6 with only the classic trap-and-emulate

approach.

So it may still be possible to implement VMMs on x86, developers of virtualization

solutions (like VMware or Xen [BDF+03]) had to invent other schemes. Most com-

monly used was Binary Transformation [AA06, Bel05]. It make use of the property

already described under De-Privileging : most instructions executed don’t access

sensitive information — normal user applications that run in a VM don’t access

any, because they are not meant to, not even outside a VM.

Thus, if the VMM transforms all instructions that accesses sensitive information,

into trapping instructions, it can again make use of trap-and-emulate. During the

VM execution, blocks (translation units) of its code are fetched and all the violating

instructions are replaced with explicit traps. After that, the block is executed with-

out interference from the VMM and will return to the VMM after it has finished.

This process is repeated during the whole lifetime of the VM.
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Claudia: A Robust Integrity Reporting Protocol for Remote Attesta-

tion. In: Second Workshop on Advances in Trusted Computing (WATC

’06 Fall). Tokyo, Japan, November 2006 107, 108

141

http://amazon.com/o/ASIN/3642041000/
http://dx.doi.org/10.1145/1400097.1400108
http://www.ietf.org/rfc/rfc4949.txt
http://www.kernelthread.com/publications/virtualization/
http://lwn.net/Articles/578295/
http://lwn.net/Articles/578852/
http://www.dwheeler.com/sloccount/
http://dx.doi.org/10.1145/353323.353383


D Bibliography Benjamin Block

[TB14] Tanenbaum, Andrew S. ; Bos, Herbert: Modern Operating Systems

(4th Edition). 4. Prentice Hall, 2014 http://amazon.com/o/ASIN/

013359162X/. – ISBN 9780133591620 6

[tbo] http://sourceforge.net/projects/tboot/ 53

[TCG05] TCG: TCG PC Client Specific TPM Interface Specification / Trusted

Computing Group. 2005 (1.2). – Forschungsbericht 32, 34, 39, 56, 84,

102, 104, 109

[TCG07] TCG: TCG Specification Architecture Overview / Trusted Computing

Group. 2007 (1.4). – Forschungsbericht 29, 30, 32, 33

[TCG11a] TCG: TPM Main Part 1 Design Principles / Trusted Computing

Group. 2011 (116). – Forschungsbericht 32, 33, 104, 109

[TCG11b] TCG: TPM Main Part 2 TPM Structures / Trusted Computing Group.

2011 (116). – Forschungsbericht 32

[TCG11c] TCG: TPM Main Part 3 Commands / Trusted Computing Group.

2011 (116). – Forschungsbericht 32

[TCG12] TCG: TCG PC Client Specific Implementation Specification for

Conventional BIOS / Trusted Computing Group. 2012 (1.21). –

Forschungsbericht 29, 32, 37, 38, 39, 40, 105

[TCG13] TCG: TCG D-RTM Architecture / Trusted Computing Group. 2013

(1.0.0). – Forschungsbericht 37, 40

[VMw09] VMware: Performance Evaluation of Intel EPT Hardware Assist /

VMware. 2009. – Forschungsbericht 7, 10

[WP10] White, Joshua ; Pilbeam, Adam: A Survey of Virtualization Tech-

nologies With Performance Testing. In: CoRR abs/1010.3233 (2010),

0. http://arxiv.org/abs/1010.3233 1, 15

[WR09] Wojtczuk, Rafal ; Rutkowska, Joanna: Attacking intel trusted

execution technology / Invisible Things Lab. 2009. – Forschungsbericht

115

[WRC08] Willmann, Paul ; Rixner, Scott ; Cox, Alan L.: Protection Strate-

gies for Direct Access to Virtualized I/O Devices. In: USENIX 2008

Annual Technical Conference on Annual Technical Conference. Berke-

ley, CA, USA : USENIX Association, 2008 (ATC’08), 15–28 12

142

http://amazon.com/o/ASIN/013359162X/
http://amazon.com/o/ASIN/013359162X/
http://sourceforge.net/projects/tboot/
http://arxiv.org/abs/1010.3233


D Bibliography Benjamin Block

[WSC+07] Willmann, P. ; Shafer, J. ; Carr, D. ; Rixner, S. ; Cox, A.L. ;

Zwaenepoel, W. ; Zwaenepoel, W.: Concurrent Direct Network

Access for Virtual Machine Monitors. In: High Performance Computer

Architecture, 2007. HPCA 2007. IEEE 13th International Symposium

on, 2007, S. 306–317 12

[XLG+13] Xi, Sisu ; Lu, Chenyang ; Gill, Christopher ; Xu, Meng ; Phan,

Linh T. ; Lee, Insup ; Sokolsky, Oleg: Global Real-Time Multi-Core

Virtual Machine Scheduling in Xen / Washington University. 2013. –

Forschungsbericht 15

143


	1 Gaining Trust in a Hypervisor
	1.1 Structure of this Work

	2 Virtualization of Hardware
	2.1 The Use of Virtual Machine Monitors
	2.1.1 Definitions

	2.2 Hardware Support for Virtualization on x86
	2.2.1 CPU-Virtualization
	2.2.2 Virtualizing Device I/O

	2.3 The Jailhouse Hypervisor
	2.3.1 Running Jailhouse on Linux


	3 Trusted Execution
	3.1 Overview of the Envisioned Execution
	3.2 Establishing Trust in Software
	3.3 The Trusted Platform Module
	3.3.1 Functional Overview

	3.4 Intel's Trusted Execution Technologies
	3.4.1 Overview
	3.4.2 Intel's Safe Mode Extension
	3.4.3 Controlling the Launch of Software with the DRTM


	4 Related Work
	4.1 Trusted Boot with TBoot
	4.2 Running Small Applications in a Trusted Environment with Flicker
	4.3 TrustVisor: a Hypervisor for Minimizing Application's TCB
	4.4 Other Works

	5 Design of the Trusted Hypervisor Execution
	5.1 Design Overview
	5.2 Defining the Parts of the Hypervisor's MLE
	5.2.1 Structure of the TXT Stub

	5.3 Responsibilities of the TXT Loader
	5.4 Responsibilities of the TXT Stub
	5.5 Changes in Jailhouse

	6 The TXT Implementation for Jailhouse
	6.1 Programming of the TXT Components of the System
	6.2 Build of the Hypervisor Image
	6.3 Implementation of the TXT Loader
	6.4 Implementation of the TXT Stub
	6.5 Changes Made to the Jailhouse Hypervisor
	6.6 Open Issues and Constraints
	6.6.1 Fixing the MLE Image
	6.6.2 Different Processor IDs

	6.7 Code Size
	6.8 Performance

	7 Security of the Trusted Hypervisor
	7.1 Assumptions About the Analysed System
	7.2 The Attacker Profile
	7.3 Hardware-Based Attacks
	7.3.1 Malicious DMA Devices
	7.3.2 Change of Firmware Settings
	7.3.3 Attacks via Power Management
	7.3.4 Reset Attacks

	7.4 Software failures and attacks
	7.4.1 Software Attacks Prior to the Measured Launch
	7.4.2 Attacks Against the Measured Launch
	7.4.3 Attacks Against the Measured Launch Environment

	7.5 Known Limitations
	7.5.1 No Trust from Within the Launched System
	7.5.2 System Management Mode


	8 Future Work
	9 Conclusion
	Appendix
	A Implementing VMMs with Trap and Emulate
	B List of Figures
	C Nomenclature
	D Bibliography

